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1.   Introduction

Network traffic is increasing exponentially along 
with the explosive growth of social media [�]. The 
development of optical fiber networks has made it 
possible to achieve high-speed, large capacity, and 
reliable networks. Device integration has been a key 
technology in reducing power consumption in elec-
tronic and optical devices, making it possible to 
achieve environmentally friendly networks. Large-
scale electronic integration based on complementary 
metal-oxide semiconductor (CMOS) technology has 
contributed to the development of high-performance 
processers and memories with low power consump-
tion. We have now entered an era of photonic integra-
tion. Integrated photonic devices such as transmitters 
and receivers are now available thanks to the advanc-
es in fabrication technology. Photonic integrated cir-
cuits (PICs) have been developed to provide the fol-
lowing benefits: (�) compactness, (2) a reduction in 
the number of components, (3) low power consump-
tion, (4) low-cost fabrication, and (5) integration of 
photonics and electronics. Semiconductor platforms 
consisting of III-V semiconductors* and silicon have 
been developed to meet these requirements. 

Wavelength-division multiplexing (WDM) is 
employed in telecom networks to transmit optical 
signals. This involves the use of integrated optical 
devices such as an electro-absorption (EA) modulator 
integrated distributed feedback (DFB) laser and a 
tunable DFB laser array on an InP substrate. Howev-
er, the numbers of devices and functions have been 
limited. Recently, advanced modulation formats, 
which use a combination of amplitude and phase 
modulation, are triggering higher density integration 
for core and metro networks. InP-based large-scale 
monolithically integrated transmitters and receivers 
consisting of more than �00 optical components have 
been reported [2]. Because the number of compo-
nents is increasing, these photonic integration tech-
nologies are promising in their potential to reduce 
assembly costs and footprints.

In addition, photonic networks have been expanded 
to short reach applications such as in access networks 
and datacom networks. Laser arrays and detector 
arrays are now used in �00-Gigabit Ethernet trans-
ceivers [3]. Each discrete device operates at the speed 
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of �0–25 Gbit/s. The trend in using photonic integra-
tion is obviously growing because of the need to 
reduce the cost and power consumption of networks. 
In datacom applications, multi-mode VCSELs (verti-
cal cavity surface emitting lasers) are used as light 
sources for inter- or intra-board transmissions. In the 
future, WDM transmitters based on integrated single-
mode laser and detector arrays will be essential to 
increase the transmission capacity. Silicon photonics 
have been actively demonstrated for a wide range of 
applications [4, 5] and show promise in meeting the 
above requirements. Although the integration of light 
sources is a challenge, most of the functions of PICs 
have been implemented on silicon. Therefore, further 
integration of III-V and silicon photonics devices are 
expected to complement each function. 

Two other factors are important in order to make 
further progress: device structure and fabrication. 
Most optical devices consist of laser/amplifier, modu-
lator/photodetector, and passive waveguide regions; 
we can fabricate every optical device for every target 
application by combining these components. Our aim 
is to develop a flexible and scalable fabrication tech-
nique implementing this concept. 

In this article, we introduce membrane devices con-
sisting of lateral p-i-n junctions as building blocks for 
PICs. We employ a selective doping technique to 
fabricate the p-i-n junctions, as it enables flexible 
device fabrication. We first clarify the advantages of 
membrane optical devices. Then we describe lateral 

current injection lasers and modulators fabricated on 
InP substrates for telecom applications. Finally, we 
discuss III-V optical devices on silicon substrates 
employing novel fabrication techniques. We also 
introduce lateral current injection lasers on SiO2/Si 
substrates for datacom applications.

2.   Concept of photonic integration

Our concept of photonic integration consists of InP-
based membrane optical devices (Fig. 1). The figure 
illustrates an example of an integrated transmitter 
consisting of lasers, modulators, and waveguide 
regions. Each active region employs a lateral p-i-n 
structure along the substrate. The electrodes are fab-
ricated on the surface to apply electrical voltage along 
the lateral direction. We use selective doping tech-
niques to fabricate the p-i-n regions. Each impurity 
doping region is fabricated on a non-doped epitaxial 
layer that includes the active and waveguide regions. 
The selective doping technique is common in CMOS 
fabrication processes, as it enables mass production.

This configuration provides higher scalability and 
productivity compared with conventional devices 
employing vertical p-i-n structures. Generally, the 
optimum doping condition is different for each active 
component. In particular, non-doped regions are 
essential as the passive waveguide regions in order to 
suppress the optical propagation loss. Conventional 
devices with vertical p-i-n junctions require a number 

Fig. 1.   Concept of PICs based on membrane optical devices.
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of crystal regrowth processes to integrate optimized 
components. Our approach can form impurity-doped 
regions without using epitaxial regrowth processes; 
in other words, the number of regrowths decreases. In 
addition, assembly with electrical components is easy 
because the electrodes are formed on one side. 

These applications are not limited to PICs on an InP 
substrate. We propose a novel process to fabricate III-
V devices on silicon. Our approach is shown in Fig. 2. 
This process uses a template consisting of III-V lay-
ers bonded on a silicon substrate. The butt-joint sec-

tions, waveguides, buried heterostructures, and dop-
ing regions are formed on this template. The use of 
large silicon wafers improves the yield. In addition, 
the alignment of III-V devices on the silicon substrate 
is possible with a level of accuracy in the sub-
micrometer range. Therefore, III-V active devices 
can be easily integrated with silicon photonic devices 
including silicon-based waveguide structures. Typi-
cal fabrication procedures are shown in Fig. 3: (a) a 
III-V wafer including active layers is bonded on a 
SiO2/Si substrate; (b) the InP region is removed; (c) 

Fig. 2.   Membrane optical devices integrated on silicon.
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waveguides are fabricated by etching; (d) buried het-
erostructures are fabricated by epitaxial regrowth; (e) 
p- and n-doped regions are formed by Si-ion implan-
tation and Zn thermal diffusion; and (f) electrodes 
and surface gratings are formed. 

The membrane devices have some advantages in 
both their device characteristics and their fabrication 
[6]. A lateral buried heterostructure with a p-i-n junc-
tion has lower capacitance compared with vertical  
p-i-n structures. This feature provides high-speed 
operation of lasers, modulators, and photodetectors 
due to the small RC (resistor-capacitor) time con-
stant. In addition, introduction of III-V slab layers 
sandwiched by low refractive index materials 
improves the power consumption because of the 
strong optical confinement. This is advantageous in 
reducing the power consumption of PICs for short-
reach datacom applications. In the next section, we 
describe the fabrication of lasers and modulators on 
InP and lasers on silicon. 

3.   Membrane devices on InP substrate:  
lasers and modulators

We fabricated lateral current injection DFB lasers 
[7] and EA modulators on an InP substrate [8]. The 
DFB lasers were fabricated using processes similar to 
those in Fig. 3 except for the wafer-bonding related 
processes in Fig. 3(a) and (b). The DFB laser consists 
of an InGaAlAs-based �4-well active region. A λ/4-
shift grating is formed on the InP surface. The static 
and dynamic characteristics of a laser with a length of 

400 μm are shown in Fig. 4(a). The single-mode las-
ing was observed at room temperature. The threshold 
current was �4 mA. This laser achieved 25-Gbit/s 
direct modulation as shown in the inset. This was the 
first demonstration of direct modulation over 25 Gbit/s 
for a lateral current injection laser. 

We also developed an EA-DFB laser employing 
lateral p-i-n junctions. The device structure and 
modulation waveform are shown in Fig. 4(b). The 
modulator section consists of an 8-well InGaAlAs 
active region. The EA length is 200 μm. This struc-
ture does not exhibit a quantum-confined stark effect, 
which is an operating principle of conventional quan-
tum-well EA modulators with vertical p-i-n struc-
tures. However, we theoretically confirmed a practi-
cal optical extinction ratio without sacrificing the 
modulation speed. The fabricated EA-DFB laser 
operates at a static extinction ratio over 20 dB. In 
addition, 50-Gbit/s modulation with a dynamic 
extinction ratio of 7.2 dB is obtained. This is the first 
demonstration of a lateral EA-DFB laser. As a result, 
a sufficient modulation speed for �00- and over �00-
Gbit/s laser arrays for telecom applications has been 
demonstrated. 

4.   Directly modulated lateral current  
injection lasers on SiO2/Si 

We also developed membrane DFB lasers on SiO2/
Si [9, �0].  A schematic of the device structure and an 
SEM (scanning electron microscopy) image of the 
cross section are shown in Fig. 5(a). The device  

Fig. 4.   Characteristics of membrane devices on InP: (a) directly modulated DFB laser, and (b) EA-DFB laser.
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consists of a 6-well InGaAsP-active region. The laser 
was fabricated according to the processes shown in 
Fig. 3. Suppressing degradation of the III-V epitaxial 
layer during the fabrication process is a challenging 
task. Thermal stress is induced during the fabrication 
because the thermal expansion coefficients are differ-
ent between the InP, SiO2, and Si layers. This stress 
can cause cracks in the III-V layer. Introduction of a 
III-V layer that is thinner than the critical thickness 
under the induced strain solved this problem. Conse-
quently, we successfully fabricated the buried hetero-
structure without serious degradation by employing 
the 250-nm-thick III-V layer that included the active 
region. 

The current-light output characteristics of the DFB 
laser are shown in Fig. 5(b). The cavity length is 73 
μm, and the threshold current is 0.9 mA at a tempera-
ture of 25°C. Regardless of the high thermal resis-
tance due to the SiO2 layer, lasing operation was 
observed up to �00°C. The laser achieved 25.8-Gbit/s 
direct modulation as shown in Fig. 5(c). The bias cur-
rent was 3.2 mA. The energy cost of the data trans-
mission was �7� fJ/bit, which is the smallest value of 
all DFB lasers. We also achieved 40-Gbit/s direct 
modulation by employing another structure. These 
results show the feasibility of low-power consump-
tion operation of membrane lasers on SiO2/Si. 

5.   Summary

We have presented InP-based membrane optical 
devices for large-scale PICs for network applications. 
These devices achieve practical performance as well 
as simple and scalable fabrication processes by means 
of selective doping techniques. We successfully dem-
onstrated DFB lasers and EA-DFB lasers fabricated 
on InP, and DFB lasers fabricated on SiO2/Si. All of 
these devices achieved modulation characteristics 
applicable to �00-Gbit/s or higher transmitters. In 
particular, the directly modulated lasers on SiO2/Si 
have the smallest energy cost of all DFB lasers: �7� 
fJ/bit. We believe these achievements pave the way 
for further development of large-scale PICs on vari-
ous platforms including InP and silicon for a wide 
range of network applications. 
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