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1.   Introduction

Face-to-face communication is one of the most 
basic forms of communication in daily life, and group 
meetings conducted using this kind of communica-
tion are effective for conveying information, under-
standing others’ intentions, and making decisions. To 
design better communication systems that can 
enhance our communication beyond conversation in 
loco* and to develop social agents/robots that interact 
naturally with human conversations, it is critical to 
fully understand the mechanism of human communi-
cation. Therefore, ways to automatically analyze 
multi-party meetings have been actively researched 
in recent years [1, 2].

Turn-taking, the situation where the speaker chang-
es, is especially important. The participants need to 
predict the end of the speaker’s utterance and who 
will start speaking next and to consider a strategy for 

good timing with respect to who will speak next in 
multi-party meetings. If a model can predict the next 
speaker and the timing that the next speaker’s utter-
ance will start, the model will lay the foundation for 
the development of natural conversational systems in 
which conversational agents/robots speak with natu-
ral timing and of teleconference systems that avoid 
utterance collisions with time delays by apprising 
participants of who will speak next.

The goal of our research is to demonstrate the 
mechanism of turn-taking, namely what kind of 
information contributes to determining the next 
speaker and the timing of the next utterance, and to 
construct a prediction model that can predict who 
speaks next and when. To predict the next speaker and 
the timing of the next utterance, we developed a pre-
diction model that has a three-step processing 
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sequence: (I) prediction of turn-taking occurrence, 
(II) prediction of the next speaker in turn-taking, and 
(III) prediction of the timing of the next utterance. A 
flowchart of the model is shown in Fig. 1.

We focus on gaze behavior and respiration as infor-
mation related to turn-taking. Gaze behavior is known 
to be an important cue for smooth turn-taking [3–5]. 
For example, the next speaker looks away when he/
she starts to speak after having made eye contact with 
the current speaker in two-person meetings. However, 
previous research has only roughly demonstrated 
gaze behavior tendencies; it has not quantitatively 
revealed the relationship between gaze behavior and 
the next speaker and the timing of the next utterance. 
It is known that utterances and respiration are closely 
related. In order to speak, we must breathe out, and 
we need to take breaths to continue speaking for a 
long time. When starting an utterance, the next speak-
er inhales deeply. Moreover, a person’s attitude about 
an utterance is frequently represented figuratively as 
breathing. For example, keeping as low a profile as 
possible so as not to be yielded the turn is often 
referred to metaphorically as holding one’s breath or 
saving one’s breath.

Thus, we focused on the detailed transitions of gaze 
behavior and respiration, which have not been inves-
tigated in multi-party meetings analysis. We previ-
ously examined the relationship between the transi-
tions of gaze behavior and respiration and the next 
speaker and next-utterance timing and revealed that 
transitions in gaze behavior and respiration are useful 
for predicting them in multi-party meetings [6–8]. In 
this article, we describe how we analyzed gaze 
behavior and respiration in multi-party meetings to 
construct our prediction models.

2.   Corpus of multi-party meetings

To analyze gaze and respiration, we collected a 
corpus of conversations in multi-party meetings. We 
recorded four natural (i.e., unrehearsed) meetings, 
such as the kind that would be held daily, conducted 
by four groups consisting of four different people (16 
people in total) for about 12 minutes [8]. In each 
meeting, all four participants were in their 20s and 
30s, and this was the first time they had met. They 
faced each other and sat down. They argued and gave 
opinions in response to highly divisive questions such 
as “Is marriage the same as love?” and were instruct-
ed to draw a conclusion within 12 minutes. 

We recorded the participants’ voices with a pin 
microphone attached to their clothing at chest level 

and made a video recording of the entire scene and 
took bust shots (head and shoulders) of each partici-
pant (recorded at 30 Hz). We recorded each partici-
pant’s respiration information using a NeXus-10 
MARK II biofeedback system. The respiration sensor 
of the system records the depth of breathing with a 
belt wrapped around the participant’s body and out-
puts a value of the degree of breathing depth (called 
the RSP value hereafter) at 128 Hz. A high RSP value 
means that the person keeps taking air into the lungs. 
In contrast, a low RSP value means the absence of air 
in the lungs. We collected data during four meetings 
that were each about 12 minutes long (a total of about 
50 minutes), and from the recorded data, we built a 
multimodal corpus consisting of the following verbal 
and nonverbal behaviors and biological information:

•	� Utterance: For the utterance unit, we used the 
inter-pausal unit (IPU) [9]. The utterance interval 
was extracted manually from the speech wave. 
The portion of an utterance followed by 200 ms 
of silence was used as the unit of one utterance. 
An utterance unit that continued by the same 
person was considered to be one utterance turn. 
Pairs of IPUs that adjoined in time, and groups of 
IPUs at the time of turn-keeping and turn-taking 
were created. There were 906 groups of IPUs 
created at the time of turn-keeping and 148 at the 
time of turn-taking.

•	� Gaze object: The gaze object was annotated 
manually using the video showing the upper 
body of the participants as well as overhead 
views from the videos by a skilled annotator. The 
objects of gaze were the four participants (here-
after denoted as P1, P2, P3, and P4) and other 

Fig. 1.   �Process flowchart of prediction model of next 
speaker and timing of next utterance.
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objects such as the floor or ceiling.
•	� Respiration: The RSP value measured by the 

Nexus MARK II has a different magnitude for 
each participant. To correct for these individual 
differences, the RSP value of each participant 
was normalized by the mean value µ and stan-
dard deviation δ of each participant. Specifically, 
the RSP value of each participant was normal-
ized on the basis of the values of µ + δ and µ − δ 
for each participant. This enabled us to treat each 
participant’s RSP value data for the analysis on 
the same scale.

All the above-mentioned data were integrated at 30 
Hz for visual display using the NTT Multimodal 
Meeting Viewer (NTT MM-Viewer) that we devel-
oped [10] (See Fig. 2).

3.   Prediction of next speaker and  
next-utterance timing based on gaze behavior

3.1   Analysis of gaze behavior
Gaze behavior is known to be an important cue for 

smooth turn-taking. For example, Kendon [4] demon-
strated that the next speaker looks away when he/she 
starts to speak after having made eye contact with the 
current speaker in two-person meetings. Thus, it is 
assumed that these temporal transitions of partici-
pants’ gaze behavior are important for the prediction 
of turn-taking situations. We therefore decided to 
focus on the gaze transition patterns near the end of 
utterances and to express them as an n-gram, which 
we defined as a sequence of gaze direction shifts. To 

generate a gaze transition pattern, we focused on the 
object a participant gazed at (gazed object hereafter) 
that occurs for 1200 ms during the period 1000 ms 
before the utterance and 200 ms after it; the candidate 
gazed objects were first classified as speaker, listen-
er, or others (non-person objects) and labeled. At this 
time, the existence of mutual gaze was taken into 
consideration from the knowledge [4–6] that a mutu-
al gaze takes place in two-person dialogs at the time 
of turn-taking. We used the following five gaze labels 
for the classification:

•	� S: Listener looks at a speaker without mutual 
gaze (speaker does not look at the listener.).

•	� SM: Listener looks at a speaker with mutual gaze 
(speaker looks at the listener.).

•	� L1-L3: Speaker or listener looks at another lis-
tener without mutual gaze. L1, L2, and L3 indicate 
different listeners.

•	� L1M-L3M: Speaker or listener looks at another 
listener with mutual gaze. L1M, L2M, and L3M 
indicate different listeners.

•	� X: Speaker or listener looks at a non-person 
object such as the floor or ceiling.

The construction of a gaze transition pattern is 
shown in Fig. 3: P1 finishes speaking, and then P2 
starts to speak. P1 gazes at P2 after he/she gazes at 
others during the interval of analysis. When P1 looks 
at P2, P2 looks at P1; namely, there is mutual gaze. 
Therefore, P1’s gaze transition pattern is X-L1M. P2 
looks at P4 after making eye contact with P1. There-
fore, P2’s gaze transition pattern is SM-L1. P3 looks at 
others after looking at P1. P3’s gaze transition  

Fig. 2.   Corpus data of multi-party meetings.
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pattern is therefore S-X. P4 looks at P2 and P3 after 
looking at others. Thus, P4’s gaze transition pattern is 
X-L1-L2.

If the next speaker and the next-utterance timing 
differ depending on the gaze transition pattern, the 
gaze transition pattern may be useful for predicting 
them in multi-party meetings. To explore the relation-
ship between gaze transition patterns and the next 
speaker and next-utterance timing, we analyzed the 
gaze transition pattern when turn-keeping and turn-
taking occur and whether the next speaker in turn-
taking and the next-utterance timing depend on the 
gaze transition pattern. After finishing the three 
analyses, we built a prediction model using gaze tran-
sition patterns.

3.2   �Analysis of gaze transition pattern and  
turn-keeping/turn-taking

First, we analyzed how much the change in the gaze 
transition pattern of the speaker and listeners would 
differ quantitatively by turn-taking and turn-keeping. 
In this article, we introduce the results of analyzing 
the speaker’s gaze transition pattern. The frequency 
of appearance of a speaker’s gaze transition pattern 
under turn-taking and turn-keeping conditions using 
1054 data sets is shown in Fig. 4. The results indi-
cated that there were 17 gaze transition patterns. The 
Others class includes six patterns, each of which 
occurred in less than 1% of the data because the 

amount of data was small. The results of a chi-squared 
test showed that the frequent appearance of a gaze 
transition pattern differed significantly between the 
conditions at the time of turn-taking and turn-keeping 
(χ2 = 87.03, df = 11, p <.01). Next, we conducted a 
residual analysis to verify which gaze transition pat-
tern differed between turn-keeping and turn-taking. 
The results are also shown in Fig. 4, from which we 
understand the following:

•	� A speaker’s gaze transition pattern has a signifi-
cantly high frequency of turn-keeping at the time 
of X and X-L1M-X. That is, when a speaker does 
not look at a listener at all, or a mutual gaze with 
a listener is started and a gaze is stopped imme-
diately, the frequency of turn-keeping is higher 
than turn-taking.

•	� A speaker’s gaze transition pattern has a signifi-
cantly high frequency of turn-taking at the time 
of L1M, L1, X-L1, and L1-X. That is, when a 
speaker continues to look at a listener (in spite of 
the presence or absence of mutual gaze), starts to 
gaze at a listener (not a mutual gaze), or stops 
looking at a listener (not a mutual gaze), the fre-
quency of turn-taking is high.

We found that the frequency of the different gaze 
transition patterns for a speaker differed in turn-keep-
ing and turn-taking. Similarly, we found that the fre-
quency of the different gaze transition patterns for a 
listener differed in turn-keeping and turn-taking. 
Therefore, these results suggest that gaze transition 
patterns of the speaker and listeners are valuable infor-
mation for predicting turn-keeping and turn-taking.

3.3   �Analysis of gaze transition pattern and next 
speaker in turn-taking

Next, we analyzed the frequency of each listener’s 
becoming the next speaker according to the speaker’s 
and listeners’ gaze transition patterns. We present 
here the results of analyzing the listeners’ gaze transi-
tion patterns. The results of totaling who becomes the 
next speaker for every listener’s gaze transition pat-
tern with 148 turn-taking data sets are shown in 
Fig. 5, where the yellow bars represent the frequency 
that the listener herself who exhibited a gaze transi-
tion pattern (behavior) becomes the next speaker. 
Moreover, in a gaze transition pattern that has L1-L3 
or L1M-L3M, listeners are classified into two catego-
ries: a listener who is gazed at and a listener who is 
not gazed at by the listener who exhibited a gaze tran-
sition pattern.

For example, in the listener’s gaze transition pattern 
L1M, the frequency of the listener exhibiting that gaze 

Fig. 3.   Sample of gaze transition pattern generation.
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transition pattern who becomes the next speaker is 
0.50, the frequency that the listener who is gazed at 
first by the listener (exhibiting the gaze pattern)  is 
0.33, and the frequency that another listener who is 
not gazed at by the listener (exhibiting the gaze pat-
tern) becomes the next speaker is 0.17. The following 
becomes clear when the relationship between a lis-
tener’s gaze transition pattern and the next speaker is 
seen in detail.

•	� When the listener’s gaze transition pattern 

includes SM, for example, SM, X-SM, SM-X, SM-L1, 
or X-SM-X, i.e., a listener makes eye contact with 
the speaker, the frequency that the listener 
becomes the next speaker is highest.

•	� When the listener’s gaze transition pattern is X-
L1, L1, X-L1M, S-L1, or X-L1-X, namely, when a 
listener starts to look at another listener, keeps on 
looking at another listener without mutual gaze, 
looks from the speaker to another listener (with-
out mutual gaze), or stops looking at the speaker 

Fig. 4.   Relationship between speaker’s gaze transition pattern and turn-keeping/turn-taking.
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Fig. 5.   Relationships between listener’s gaze transition pattern and next speaker in turn-taking situation.
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immediately after starting to look at the speaker 
(without mutual gaze), the frequency that the 
listener falling into pattern L1 or L1M becomes the 
next speaker is highest. Conversely, when the 
listener’s gaze transition pattern is L1M, i.e., a 
listener continues to carry out a mutual gaze with 
another listener, the frequency that the listener 
herself becomes the next speaker is highest.

We found that the frequency of each listener’s 
becoming the next speaker in turn-taking differs 
depending on the listeners’ gaze transition patterns. 
Similarly, we found that the frequency of each listen-
er’s becoming the next speaker in turn-taking differs 
depending on the speaker’s gaze transition pattern. 
These results suggest that gaze transition patterns of 
the speaker and listeners are valuable information for 
predicting the next speaker in turn-taking situations.

3.4   �Analysis of gaze transition pattern and next-
utterance timing

An early study on this topic [4] showed that a lis-
tener’s response is delayed if a speaker does not look 
at the listener; consequently, we think that gaze 
behavior is useful for predicting the timing of the next 
utterance. We quantitatively analyzed the correlation 
between the timing of the next utterance and the gaze 
transition pattern of the speaker and listeners. We 
defined timing interval TP as the interval between the 
end of the speaker’s IPU and the start of the next 
speaker’s IPU.

We analyzed the TP for each gaze transition pattern 
of the speaker and listeners in turn-keeping and of the 
speaker, listeners, and next speaker in turn-taking.

In this article, we introduce the results for only the 
next speaker’s gaze transition pattern in turn-taking. 
Box plots of TP obtained for each next speaker’s gaze 
transition pattern using 148 data sets are shown in 
Fig. 6. The Others class includes 38 patterns, each of 

which occurred in less than 5% of the data because 
the number of data was small. A one-way ANOVA 
(analysis of variance) showed that there is a signifi-
cant difference in TP depending on the speaker’s gaze 
transition patterns (F(4,315) = 2.05, p <.10). Here, SM 
and S, which indicate that the next speaker continues 
to look at the current speaker, have the shortest medi-
an values, 675 and 754 ms. In contrast, L1M, which 
means the next speaker continues to look at the lis-
tener with mutual gaze, has the longest median value, 
1673 ms. That is, when the next speaker continues to 
look at the current speaker, the timing of the next 
speaker’s utterance starts early. When the previously 
reported gaze behaviors mentioned above [4] occur, 
the next speaker starts to speak quickly. In contrast, 
when the next speaker does not look at the current 
speaker, turn-taking is not smooth, and the timing is 
late.

We found that the next-utterance timing differs 
depending on the next speaker’s gaze transition pat-
tern in turn-taking. Similarly, we found that the fre-
quency of the next-utterance timing differs depending 
on the speaker’s and listeners’ gaze transition patterns 
in turn-keeping and turn-taking. These results suggest 
that gaze transition patterns of the speaker and listen-
ers in turn-keeping and of the speaker, listeners, and 
next speaker in turn-taking influence the next-utter-
ance timing situations. Therefore, it would be useful 
to use the gaze transition patterns to predict the next-
utterance timing.

3.5   �Prediction model using gaze transition 
pattern

The analysis results described in the previous sub-
sections indicate that gaze transition patterns provide 
useful indicators of turn-keeping and turn-taking, the 
next speaker in turn-taking, and the timing of the next 
utterance in multi-party meetings. On the basis of 

Fig. 6.   Relationship between next speaker’s gaze transition pattern and TP in turn-taking.
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these results, we constructed a prediction model that 
features three processing steps using gaze transition 
patterns. The model is based on a support vector 
machine (SVM), in which the method is SMO 
(sequential minimal optimization) [11]. We also 
evaluated the accuracy of the model, along with the 
effectiveness of the gaze transition patterns. The set-
tings of the SVM are the radial basis function (RBF) 
kernel. 

For the turn-keeping/turn-taking prediction model, 
the data used in the SVM consist of the turn states of 
turn-taking and turn-keeping as a class and the gaze 
transition patterns of the speaker and three listeners 
as features. In this phase of the study, we employed 
leave-one-out with 296 data sets: 148 data sets 
obtained by sampling 906 data items in turn-keeping 
to remove the bias of the number of data, and 148 data 
sets in turn-taking, four-fold cross validation. We col-
lected data from four groups; we obtained training 
data from three of them and test data from the remain-
ing one. Then we calculated the average prediction 
accuracy. The results of the evaluation indicated an 
accuracy rate of 65.0% in turn-keeping and 68.2% in 
turn-taking. This suggests that the gaze transition pat-
terns are useful for predicting turn-taking and turn-
keeping.

For the prediction model of the next speaker in 
turn-taking, the data used in the SVM consist of the 
listener who will be the next speaker as a class and the 
gaze transition patterns of the speaker and three lis-
teners as features. In this phase of the study, we 
employed leave-one-out with 148 data sets of four 
dialogs, four-fold cross validation. The results 
showed an average prediction accuracy rate of 61.0%. 
This suggests that the gaze transition patterns contrib-
ute to predicting the next speaker in turn-taking.

For the prediction model of the next-utterance tim-
ing, the data used in the SVR (SVM for regression) 
contain the start timing as a class and the gaze transi-
tion patterns of the speaker and three listeners in turn-
keeping and of the speaker, two listeners, and next 
speaker in turn-taking as features. We examined two 
models for turn-keeping and turn-taking situations. In 
this phase of the study, we employed leave-one-out 
with 906 data sets in turn-keeping and 148 data sets 
in turn-taking of four dialogs, four-fold cross valida-
tion. We calculated the error in the results predicted 
from the actual utterance start time was calculated. As 
a result, the average errors were 324 ms in turn-keep-
ing and 1281 ms in turn-taking. In a similar manner, 
we examined a base model that outputs the average 
value of interval TP. The average error for the base 

model were 469 ms in turn-keeping and 1590 ms in 
turn-taking, which was higher than that for our pre-
diction model. This suggests that the gaze transition 
patterns contribute to predicting the timing of the next 
speaker’s first utterance in multi-party meetings.

4.   Prediction of next speaker based on 
respiration

Utterances and respiration are known to be closely 
related. In order to speak, we must breathe out, and 
we need to take breaths to continue speaking for a 
long time. When starting an utterance, the next speak-
er inhales deeply. Moreover, a person’s attitude about 
an utterance is frequently represented figuratively as 
breathing. For example, as mentioned previously, 
when someone tries to keep as low a profile as pos-
sible so as not to be yielded the turn, it is often 
referred to metaphorically as holding one’s breath or 
saving one’s breath. As a first attempt to deal with 
respiration, we conducted a fundamental study of the 
relationships between respiration and the next speak-
er in multi-party meetings [8]. After that, we devised 
a prediction model of the next speaker using respira-
tion.

We analyzed how the respiration of the speaker and 
listeners in turn-keeping and of the speaker, listeners, 
and the next speaker quantitatively differs in turn-tak-
ing. We considered that if the analysis revealed differ-
ences in the speaker’s respiration between turn-taking 
and turn-keeping or differences in respiration between 
the next speaker in turn-taking and the listener in 
turn-taking and turn-keeping, respiration could be 
used as a useful indicator to predict the next speaker.

We assumed that the speaker takes a breath quickly 
right after the utterance to continue to speak in turn-
keeping. In contrast, we assumed that the speaker 
doesn’t take a breath quickly right after the utterance 
in turn-taking. Therefore, we focused on the speaker’s 
inhalation right after the end of IPU for the analysis 
of speaker’s inhalation. We extracted the speaker’s 
inhalation phase just after the end of the IPU and used 
the following inhalation-phase parameters for the 
speaker in order to compare differences in inhalation 
in detail (see Fig. 7).

•	� MIN: RSP value at the start of the inhalation 
phase, i.e., the minimum RSP value of the inha-
lation phase.

•	� MAX: RSP value at the end of the inhalation 
phase, i.e., the maximum RSP value of the  
inhalation phase.

•	� AMP: Amplitude of RSP value of inhalation 
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phase.
•	� DUR: Duration of inhalation phase.
•	� SLO: Mean value of slope of RSP value per sec-

ond during inhalation phase.
•	� INT: Interval between end time of speaker’s IPU 

and start time of inhalation.
We analyzed these parameters in turn-taking and 
turn-keeping.

We calculated the mean value of the six parameters 
of the speaker in turn-taking and turn-keeping. Then, 

we calculated the mean value for all participants. We 
used a paired t-test to statistically verify whether the 
each parameter in turn-taking was significantly dif-
ferent from the same value in turn-keeping. The 
results suggested that there are significant differences 
in only DUR, SLO, and INT between turn-keeping 
and turn-taking (t(30) = 3.08, p <.01 for DUR; t(30) 
= 2.96, p <.01 for SLO; t(30) = 2.04, p <.10 for INT). 
These average values of DUR, SLO, and INT are 
shown in Fig. 8. These results reveal that the speaker 

Fig. 7.   Analytical parameters of inhalation right after end of IPU.
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inhales more rapidly and quickly right after the end of 
a unit of utterance in turn-keeping.

We assumed that the next speaker takes a big breath 
right before starting to speak in turn-taking. In con-
trast, the listeners don’t take a big breath. Therefore, 
we focused on the listeners’ inhalation right before 
the start of next speaker’s IPU for the analysis of lis-
teners’ respiration in turn-taking. We extracted the 
inhalation phase of the listeners. Then, we calculated 
the mean value of the six parameters for the listeners 
who will not become the next speaker (i.e., non-next 
speakers) and the listeners who will become the next 
speaker (i.e., next speakers) in turn-taking. We used a 
paired t-test to statistically verify whether the each 
parameter of the inhalation phase of the next speaker 
was significantly different from that of non-next 
speakers in turn-taking. The results suggested that 
there are significant differences in only MAX, and 
AMP between the next speaker and non-next speaker 
(t(30) = 1.98, p <.10 for MAX, t(30) = 2.03, p <.10 for 
AMP). The average values of MAX and AMP are 
shown in Fig. 9. These results reveal that the listener 
who will be the next speaker takes a bigger breath 
before speaking than listeners who will not become 
the next speaker in turn-taking.

The analysis results suggest that DUR, SLO, and 
INT of the speaker’s inhalation right after the IPU can 
potentially be used to predict whether turn-keeping or 
turn-taking will occur, and the MAX and AMP of the 
inhalation phase of listeners can potentially be used 
to predict the next speaker in turn-taking. 

To investigate the effectiveness of DUR, SLO, and 

INT of the speaker’s inhalation right after the IPU to 
predict whether turn-keeping or turn-taking will 
occur, we constructed a prediction model based on an 
SVM and evaluated its performance. The SVM set-
tings are RBF kernels. The data used in the SVM 
consist of the turn states of turn-taking and turn-keep-
ing as a class and DUR, SLO, and INT of the speaker’s 
inhalation as features. We employed the four-fold 
cross validation with 296 data sets, which includes 
148 sets of data obtained by sampling 906 data items 
in turn-keeping in order to remove the bias of the 
number of data and 148 data sets in turn-taking. The 
accuracy rate of the prediction model was 78.7%. 
This suggests that parameters DUR, SLO, and INT of 
the speaker’s inhalation right after the IPU contribute 
to predicting whether turn-keeping or turn-taking will 
occur. 

Next, to investigate the effectiveness of MAX and 
AMP of the three listeners’ inhalation before the next 
utterance in order to predict the next speaker in turn-
taking, we constructed a prediction model based on 
the SVM as previously explained and evaluated its 
performance. The data used in the SVM consist of the 
next speaker as a class and the parameters MAX and 
AMP of each of the three listeners’ inhalation as fea-
tures. We employed four-fold cross validation with 
the 148 turn-taking data samples. The accuracy rate 
of the prediction model was 40.8%. The chance level 
was 33.3% because there were three next-speaker 
candidates in turn-taking. This suggests that the MAX 
and AMP parameters of the listeners’ inhalation con-
tribute to predicting the next speaker in turn-taking. 

Fig. 9.   �MAX and AMP of inhalation phase of listeners who will not become next speaker (i.e., non-next speaker) and 
listener who will become next speaker (i.e., next speaker) right after end of IPU in turn-taking.
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Therefore, we found that the participants’ respiration 
is useful for predicting the next speaker in multi-party 
meetings.

5.   Conclusion

We have developed a model for predicting the next 
speaker and the timing of the next speaker’s utterance 
in multi-party meetings. As an initial attempt, we 
demonstrated how effective gaze behavior and respi-
ration are in predicting the next speaker and next-
utterance timing. We found from the results of ana-
lyzing gaze behavior that the next speaker and the 
timing of the next utterance differ depending on the 
gaze transition patterns of participants. The results of 
respiration analysis revealed that a speaker inhales 
more rapidly and quickly right after the end of a unit 
of utterance in turn-keeping than in turn-taking. The 
next speaker takes a bigger breath in preparing for 
speaking than listeners do who will not become the 
next speaker in turn-taking. We also constructed pre-
diction models to evaluate how effective gaze behav-
ior and respiration are in predicting the next speaker 
and the next-utterance timing. The results suggest 
that gaze behavior is useful for predicting the next 
speaker and the utterance timing, and respiration is 
also useful for predicting the next speaker. In the 
future, we plan to explore a high-performance predic-
tion model using multimodal processing with the 
goal of achieving highly accurate prediction.
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