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1.   Single-electron transfer and current 
standards

Single-electron (SE) transfer is a technique for con-
veying electrons one by one in synchronization with 
a clock signal. It has been extensively studied using 
solid devices mainly fabricated from metals or semi-
conductors. An accurate current flow generated by 
SE transfer is expected to be used as a new current 
standard, which corresponds to a measure of electric 
current. Realization of the current standard could lead 
to the redefinition of the ampere (Fig. 1(a)), which 
has recently attracted much attention. The definition 
of the ampere is presently referenced to a force  
produced by the same current flowing through two 
infinite-length conductors in a vacuum, and it is 
therefore difficult to achieve the exact conditions 
described in the definition in actual experiments. In a 
practical sense, the definition has the effect of fixing 
the value of the vacuum permeability (with a unit of 
m·kg·s−2·A−2). In addition, because the ampere 
depends on the units of length, mass, and time, the 
accuracy of the ampere is strongly affected by the 

change in the weight of the international prototype 
kilogram*�, which is the only artifact among the stan-
dards and defines mass. 

To eliminate such uncertainty originating from the 
artifact, the abolition of the international prototype 
kilogram was proposed in 20�� (and will be carried 
out after 20�8), and, along with the abolition, the 
ampere will also be redefined. In the redefinition, the 
ampere is set by fixing the numerical value of the 
elementary charge e. SE transfer can generate accu-
rate current with a value of e × f simply using an input 
clock signal with frequency f, which can be obtained 
with the highest accuracy among all standards. It is 
therefore expected to be used as an ultimate current 
standard that enables the ampere to be directly set 
with a single device.

In addition, an important milestone for achieving 
the new current standard is the quantum metrology 
triangle experiment (Fig. 1(b)). In this experiment, 
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the current generated from a current standard using 
SE transfer is compared with that generated from a 
combination of the quantum Hall resistance stan-
dard*2 and the Josephson voltage standard*3, which 
are now used in the International System of Units 
(SI). If SE transfer with sufficiently high accuracy 
can be achieved, the accuracy of the von Klitzing 
constant RK = h/e2, where h is the Planck constant, 
and the Josephson constant KJ = 2e/h would be verifi-
able through the experiment, which could lead to the 
realization of more accurate electrical standards.

For application to the current standard, the device 
should be able to generate a wide range of current. 
However, because e is a tiny value (~�.6 × �0−�9 C), 
many electrons must be carried to obtain a large cur-
rent level. For example, high-speed SE transfer with 
a gigahertz transfer frequency is necessary to perform 
the quantum metrology triangle experiments with 
high accuracy. In addition, since the accuracy of the 
present electrical standards is about �0−8, the accura-
cy of SE transfer should be below �0−8. SE transfer 
has so far been studied using various systems, but 
devices that can simultaneously satisfy both the speed 
and accuracy requirements have not yet been devel-
oped.

At NTT Basic Research Laboratories, we have been 

studying SE transfer using silicon devices as part of 
efforts to achieve high-speed and high-accuracy SE 
transfer. With silicon, we should be able to stably 
fabricate devices that can be used for the current stan-
dard because we can use well-established device 
fabrication techniques accumulated through develop-
ments in the semiconductor industry. In this article, 
we introduce tunable-barrier SE transfer devices, 
which can be operated at high speed.

*2 Quantum Hall resistance standard: When a two-dimensional elec-
tron system is placed under a low temperature and a high mag-
netic field, Hall resistances are quantized due to the quantum Hall 
effect. The quantum Hall resistance standard is a standard using 
the value of the quantized Hall resistance, which is the product of 
the von Klitzing constant (RK = h/e2) and the reciprocal of the in-
teger number.

*3 Josephson voltage standard: When a high-frequency signal with 
frequency f is applied to a structure having an insulator (or a nor-
mal conductor) sandwiched with two superconductors, the output 
voltages are quantized due to the alternating-current Josephson 
effect. The Josephson voltage standard is a standard using the 
value of the quantized voltage, which is the integer multiple of the 
product of f and the reciprocal of the Josephson constant (KJ = 
2e/h).

Fig. 1.   Application to current standards.
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2.   Silicon tunable-barrier SE transfer devices: 
transfer via an SE island

A schematic and an SEM (scanning electron micro-
scope) image of the silicon tunable-barrier SE trans-
fer device are respectively shown in Figs. 2(a) and 
2(b). We used electron beam lithography to fabricate 
silicon transistors that have double-layer n+-doped 
polycrystalline-silicon gate electrodes on a silicon 
wire with a width of a few dozen nanometers. Each 
lower gate (G�, G2) induces a potential barrier in the 
silicon wire, leading to the formation of a small 
region between G� and G2 (hereafter called an SE 
island) in which electrons are confined. The upper 
gate (UG) is used to modulate the electron potential 
in the SE island. 

To perform SE transfer via the SE island, we apply 
high-frequency signal VG� with frequency f to G�, 
with fixed negative voltage VG2 applied to G2 
(Fig. 2(a)). In this case, the barrier under G� is peri-
odically modulated, with a fixed barrier formed under 
G2, as shown in the electron potential diagram in 
Fig. 2(c). Since G� and the SE island are capacitively 
coupled, the potential in the SE island rises as the bar-
rier under G� rises. As a result, electrons captured by 
the SE island from the source when the barrier under 
G� is low are eventually emitted to the drain over the 
barrier under G2. When an SE is transferred each 
cycle, the output current level is ef. To capture an 
accurate number of SEs in the SE island, the electron 
addition energy*4 in the SE island must be much 
larger than the thermal fluctuation energy determined 
by temperature. This condition can be achieved by 

fabricating nanometer-scale devices. In addition, 
when the resistance determined by the potential bar-
rier shape during the capture of electrons is small, the 
delay time determined by the product of the resis-
tance and the island capacitance is short, resulting in 
fast SE transfer. In the tunable-barrier SE transfer, 
since the height of the potential barrier during the 
capture of electrons can be low, it is possible to 
achieve high-speed operation by reducing the resis-
tance of the barrier. 

A typical result of high-speed SE transfer using the 
tunable-barrier transfer device is shown in Fig. 3(a) 
[�]. By increasing the voltage applied to the UG 
(VUG), we lower the electron potential of the SE 
island and change the number of electrons captured in 
the SE island. In the flat plateau regions (with current 
levels of �ef, 2ef, and 3ef ), an integer number of elec-
trons is accurately transferred. In addition, we dem-
onstrated high-speed single-hole transfer by fabricat-
ing a p-type source and p-type drain [2] (Fig. 3(b)). If 
radiative recombination of simultaneously transferred 
electrons and holes can be efficiently induced, it will 
be possible to realize a single-photon source with an 
accurate period. Furthermore, we combined the tun-
able-barrier SE transfer device with an SE-resolution 
charge sensor and evaluated the transfer accuracy by 
detecting the number of transferred SEs. We have so 
far reported that the error rate of the SE transfer is 

Fig. 2.   Silicon tunable-barrier SE transfer device.

A

Silicon wire

Frequency f

G
1

G
2

Silicon dioxide

Silicon

S
ilicon dioxide

e−e−

e−

e−

e−

e−

Trap level

SE island

SE islandTrap level

Upper gate (UG)

VG2

VG1

200 nm

G
1

G
2

Trap level

SE island

Trap level

SE island

Drain

G2

Electron 
addition energy

(b) SEM image of device

(c) SE transfer mechanism(a) Schematic of device

SE
Emission

G1

Source

Capture

VUG

S
ou

rc
e

D
ra

in

*4 Electron addition energy: This is the energy required to add one 
electron to a certain region. The value is mainly determined by the 
charging energy originating from electrostatic repulsion of elec-
trons and the quantum-mechanical energy originating from con-
finement of electrons.
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about �0−4 at about �00 MHz and that it is possible to 
reduce it to about �0−8 by optimizing the operating 
conditions [3].

3.   Silicon tunable-barrier SE transfer devices: 
transfer via a trap level

In the SE transfer via the SE island, increasing the 
electron addition energy by scaling down the device 
size leads to improved transfer accuracy, but device 
miniaturization beyond the limitation of semiconduc-
tor nanofabrication technology is not easy. In con-
trast, using a naturally existing trap level with an 
extremely fine confinement area of less than �0 nm, 
which is difficult to artificially fabricate, can lead to 
high-accuracy operation due to its large electron 
addition energy. Among the silicon SE transfer devic-

es like the one shown in Fig. 2(a), we selected a 
device that has a single trap level under the right edge 
of G� and measured the transfer current via the trap 
level [4]. The trap level most likely originates from a 
trap at the interface between silicon and silicon diox-
ide. Although the voltages applied to G� and G2 are 
similar to those for the transfer via the SE island, in 
the trap-mediated transfer, an SE is captured by the 
trap level from the source when the barrier under G� 
is low. Then, when the barrier under G� is high, the 
captured SE is emitted to the drain. 

Current plateaus of the SE transfer at a frequency of 
�0 MHz are shown in Fig. 4(a). The �ef plateau 
originating from the trap-mediated transfer is much 
wider than the other plateaus originating from the SE-
island-mediated transfer, which indicates that the 
trap-mediated transfer is more accurate. To perform 

Fig. 3.   Transfer via an SE island.
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high-speed operation, the SE capture and emission 
shown in Fig. 2(c) must be sufficiently fast. Detailed 
measurements reveal that fast capture and emission 
can be achieved by lowering the barrier height under 
G� during the capture phase and by applying a strong 
electric field at the trap level during the emission 
phase. This can be achieved when the high-frequency 
signal has a large amplitude. Under this condition, the 
value of the �ef plateau increases as frequency f 
increases, as shown in Fig. 4(b), and we achieve high-
speed operation at 3.� GHz (Fig. 4(c)). Moreover, 
high-resolution measurements of the transfer current 
at 3.� GHz reveal that the transfer error rate is below 
the level (~�0−3) that can be measured using a com-
mercial current meter. In addition, we found theoreti-
cally that �-GHz operation with an error rate of below 
�0−8 is possible.

4.   Future work

The SE transfer via the SE island and that via the 
single trap level, which we have described in this 
article, have both advantages and disadvantages. For 
the trap-mediated transfer, sufficiently high-speed 
and high-accuracy operation is expected, but it is dif-
ficult to improve the device yield because the trap 
position is random. One promising way to solve this 
problem is to use impurity doping with a position-
control technique. In contrast, the device yield of the 
island-mediated transfer should be better than that of 

the trap-mediated transfer, which is important for 
realizing universal standards. However, because the 
accuracy of the island-mediated transfer might be 
lower than that of the trap-mediated transfer, a tem-
perature below �0 K is necessary. In the future, it will 
be necessary to evaluate the accuracy of both types of 
transfer at high speed by measuring the number of 
transferred electrons with a high-resolution charge 
sensor. In addition to evaluating the accuracy in more 
detail, we plan to conduct quantum metrology trian-
gle experiments; we also want to apply the device to 
the current standards. Furthermore, we expect that the 
device will be able to be used for information pro-
cessing based on SE manipulation. In this respect, 
one of the long-term goals is to achieve low-power 
consumption information processing by integrating 
the devices.
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