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1.   Introduction

With the democratization of the Internet, social 
media, and connected devices, the amount of data 
that can be used for scientific or business purposes is 
ever growing. In this context, machine learning has 
recently attracted a lot of attention due to its ability to 
leverage large amounts of data for predictive analyt-
ics. In particular, regression analysis is a frequently 
used predictive technology in machine learning.

We present regression analysis by using house price 
prediction as a running example (Fig. 1). House price 
is typically determined by numerous features such as 
whether the house is detached or terraced (adjoined to 
other homes), the number of rooms, and whether it 
has a garden. We can use regression analysis to obtain 
from past examples of sold houses an equation that 
relates these features to the house price. In linear 
regression, the relationship between the features x = 
(x1,...,xd) and the house price y is modeled by y = 

d
{j=1}wj xj = wTx, where w = (w1,...,wd) is a weight 

vector estimated from previously sold houses. By 
inspecting the estimated weights, we can infer what 
features influence house price the most. In addition, 
by using the aforementioned model equation, we can 
predict the price of new houses, given their features.

However, while linear regression is very simple, it 
has some limitations. For example, while the price of 
both detached and terraced houses decreases with 

distance from the city center, we expect the price of 
terraced houses to decrease faster than that of 
detached houses. In this case, since linear regression 
estimates a weight for the distance from city center 
independently of whether a house is detached or ter-
raced, it cannot achieve high predictive accuracy. To 
solve this problem, it is necessary to estimate differ-
ent weights for the distance to the city center, depend-
ing on whether a house is detached or terraced. In 
other words, it is necessary to introduce feature com-
binations in the model equation. This is called sec-
ond-order polynomial regression.

Second-order polynomial regression can estimate 
models that fit the data better than linear regression. 
However, because the number of feature combina-
tions is quadratic in the number of features, the num-
ber of feature combinations can quickly explode. For 
example, in genomic selection, which is the task of 
predicting grain yield from the DNA (deoxyribonu-
cleic acid) of cereal plants, the number of genes is 
very large, and therefore, using feature combinations 
in the model equation can become impractical. Fac-
torization machines (FM) [1] are a recently proposed 
method that can deal with a large number of feature 
combinations. Unfortunately, with FM, the quality of 
the estimated model strongly depends on the param-
eter initialization. To address this issue, we at NTT 
Communication Science Laboratories developed 
convex factorization machines (CFM), a new 
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technology that can both cope with a large number of 
feature combinations and guarantees a globally opti-
mal model regardless of the initialization [2].

2.   CFM

In second-order polynomial regression, the rela-
tionship between house features and house price is 
modeled by the equation y = wTx + xTWx, where 
again, w is a weight vector, and W is a matrix whose 
elements correspond to the weights of feature combi-
nations. When the number of features d is large, esti-
mating W can quickly become impractical because W 
is a d x d matrix. To address this issue, both CFM and 
the original FM reduce the number of parameters to 
be estimated by assuming that W is a low-rank 

matrix. With the original FM, W is replaced by PPT, 
where P is a d x k matrix (k << d) and k is a user-
defined rank hyper-parameter. The original FM then 
use training data to estimate P instead of W (Fig. 2). 
However, because the estimation of P involves a non-
convex optimization problem, the quality of the 
obtained parameters greatly depends on the initializa-
tion. In practice, it is therefore necessary to try differ-
ent initializations in order to obtain good results.

In contrast, our proposed technology, CFM, is guar-
anteed to obtain globally optimal model parameters 
regardless of the initialization. We developed an effi-
cient algorithm to learn W in eigendecomposition 
form. We can use our algorithm to estimate the k 
eigenvalue-eigenvector pairs of W (Fig. 3). In addi-
tion, our algorithm automatically determines the rank 

Fig. 1.   Application of regression analysis to house price prediction.
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Fig. 2.   Matrix decomposition obtained by the original FM.
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k of W from data. 
In Table 1, we empirically compare ordinary sec-

ond-order polynomial regression (i.e., without a low-
rank constraint), FM, and CFM on genomic selection 
(the task of predicting grain yield from the DNA of 
cereal plants). The values in the table indicate the 
Pearson correlation between the true grain yield and 
the grain yield predicted by the three methods (higher 
is better) on test data. Results for FM were obtained 
by trying several possible initializations. These 
results show that CFM can achieve higher predictive 
accuracy than FM. In addition, the CFM results are 
also better than those for ordinary second-order poly-
nomial regression. In machine learning, it is generally 
known that a model can overfit the data if the number 
of parameters is too large. We believe that CFM can 
mitigate this issue thanks to the reduced number of 
parameters to be estimated.

An important property of the low-rank constraint 
used in FM and CFM is that it enables the weights of 
feature combinations that were not observed in the 
training set to be estimated. This property is particu-
larly useful in implementing recommender systems, a 
domain where FM have been particularly popular in 
recent years.

3.   Higher-order extensions

We presented CFM, a new technology capable of 
efficiently leveraging second-order feature combina-
tions. To further improve predictive accuracy, it is 
sometimes useful to consider third-order or higher-
order feature combinations. We recently proposed 
new efficient algorithms for this purpose [3, 4].

References

[1] S. Rendle, “Factorization Machines,” Proc. of ICDM 2010 (the 10th 
IEEE International Conference on Data Mining), pp. 995–1000, Syd-
ney, Australia, Dec. 2010.  

[2] M. Blondel, A. Fujino, and N. Ueda, “Convex Factorization 
Machines,” Proc. of ECML PKDD (European Conference on 
Machine Learning and Principles and Practice of Knowledge Discov-
ery in Databases) 2015, Vol. 9285, pp. 19–35, Porto, Portugal, Sept. 
2015.  

[3] M. Blondel, M. Ishihata, A. Fujino, and N. Ueda, “Polynomial Net-
works and Factorization Machines: New Insights and Efficient Train-
ing Algorithms,” Proc. of ICML 2016 (the 33rd International Confer-
ence on Machine Learning), pp. 850–858, New York, USA, June 
2016.

[4] M. Blondel, A. Fujino, N. Ueda, and M. Ishihata, “Higher-order Fac-
torization Machines,” Proc. of NIPS 2016 (the 30th Annual Confer-
ence on Neural Information Processing Systems), to appear, Barce-
lona, Spain, Dec. 2016.

Fig. 3.   Eigendecomposition obtained by CFM.
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Table 1.   Example of application of CFM to genomic selection.

2nd-order polynomial
regression FM CFM

Wheat 1 0.397 0.376 0.402

Wheat 2 0.471 0.501 0.526

Rice 0.660 0.656 0.662



4

Feature Articles

Vol. 14 No. 11 Nov. 2016

Mathieu Blondel
Research Scientist, Ueda Research Group, 

NTT Communication Science Laboratories. 
He received an engineering diploma from Tele-

com Lille, France, in 2008 and a Ph.D. in engi-
neering from Kobe University, Hyogo, in 2013. 
He joined NTT Communication Science Labora-
tories in 2013. His current research interests 
include machine learning, mathematical optimi-
zation, the design of efficient machine learning 
software, and the application of these areas to 
real-world applications.

Naonori Ueda
Head of Ueda Research Laboratory, NTT 

Communication Science Laboratories and NTT 
Fellow.

He received his B.S., M.S., and Ph.D. in com-
munication engineering from Osaka University 
in 1982, 1984, and 1992. He joined Yokosuka 
Electrical Communication Laboratories of Nip-
pon Telegraph and Telephone Public Corporation 
(now NTT) in 1984. In 1994, he moved to NTT 
Communication Science Laboratories in Kyoto, 
where he has been researching statistical machine 
learning, Bayesian statistics, and their applica-
tions to web data mining and big data analysis. 
From 1993 to 1994, he was a visiting scholar at 
Purdue University, Indiana, USA. He is a guest 
professor at the National Institute of Informatics 
and a visiting professor at Kyoto University. He 
is a Fellow of the Institute of Electronics, Infor-
mation and Communication Engineers and a 
member of the Information Processing Society of 
Japan and the Institute of Electrical and Electron-
ics Engineers. In July 2013, he became Director 
of Machine Learning Data Science Center, after 
serving as Director of NTT Communication Sci-
ence Laboratories for three years. Since April, 
2016, he has been head of Ueda Research Labo-
ratory, NTT Communication Science Laborato-
ries, and an NTT Fellow.

Akinori Fujino
Senior Research Scientist, Learning and Intel-

ligent Systems Research Group, NTT Communi-
cation Science Laboratories.

He received a B.E. and M.E. in precision engi-
neering from Kyoto University in 1995 and 1997, 
and a Ph.D. in informatics from Kyoto University 
in 2009. He joined NTT in 1997. His current 
research interests include machine learning and 
knowledge discovery from complex data.


