
1 NTT Technical Review

1. Introduction

Software development is divided into processes, as
illustrated in Fig. 1. Software errors not detected in
the testing phase go out to end users in the release, so
testing is clearly very important to ensure the quality
of the software. As long as testing is done manually,
however, it will be extremely costly. User needs and
software/hardware development of the operating
environment have been evolving at an ever more
rapid pace in recent years, and this requires early and
frequent releases of new or revised software to meet
these needs (Fig. 2). To maintain quality through
repeated software release cycles, regression testing
must be done to make sure new portions of soft-
ware—including portions implementing new func-
tions and new operating environments—do not have
an adverse effect on existing software capabilities,
and this testing of legacy capabilities whenever soft-
ware is released is also extremely costly.

In order to pursue software development that con-
stantly improves upon quality, cost, and delivery
(QCD), the NTT Software Innovation Center is
researching and developing technology that contrib-
utes to a set of test automation tools as part of the

Test Automation Technology to
Promote Early and Frequent Releases
of Software at Low Cost
Haruto Tanno, Morihide Oinuma,
and Katsuyuki Natsukawa

Abstract
There is growing demand to speed up the software release cycle while holding down costs in order to

rapidly deploy services that meet the changing needs of end users. Considerable interest has been
focused on technology for software testing, which accounts for a large share of total development costs,
to ensure a certain level of software quality. In this article, we introduce some concrete measures at NTT
for supporting test design and verification of test results in software testing.

Keywords: software testing, test design, verification of test results

Feature Articles: Improving Productivity in Software
Development Using Macchinetta Framework

Fig. 1. Software development process.

Requirements
definition Design Coding Testing

Fig. 2. Feedback loop.

Development

Analysis

Release
Improve

Collect user
feedback.

Employed
by users

2

Feature Articles

Vol. 15 No. 2 Feb. 2017

Macchinetta tool suite [1]. The idea is to promote test
automation that performs tasks by machine that were
previously done manually.

2. Current state of software testing support

The objectives of software testing are to verify that
software has been implemented according to the
design and specifications, and to reduce the number
of defects. The testing process mainly consists of five
tasks: test planning, test design, test execution, test
reporting, and test management (Fig. 3). In test plan-
ning, issues such as the time frame and allocation of
resources for testing are decided based on the overall
development plan. Test design involves clarifying the
various tests that must be done, designing test cases
comprehensively, refining specific test feasibility
procedures for each test case, and creating scripts for
automatic execution. In test execution, test data are
input for each of the test cases, the software is run,
and test results revealing how the software behaves
for each of the test cases are recorded. These results
are then referenced against verified test results to
ensure the software behaves according to design. In
test management, management of the state of test
execution is carried out as needed, and the test plan is
revised if necessary. When all tests have been execut-
ed, the results are summarized in test reporting, and
the process is complete.

Three of these test processes are especially impor-
tant tasks: test design, test execution, and verification
of test results. Once test cases are produced in the test
design, the tests must be implemented precisely with
no missing test cases so they can be repeatedly used
not only as new tests but also as regression tests in
cases where software is patched or improved. Test
execution and verification of test results must be car-
ried out repeatedly against all legacy functions when

dealing with software enhancements and new operat-
ing environments, and the burden increases exponen-
tially as the scale of software increases. Therefore,
these three tasks are areas in which the effects of
automation are significant for maintaining software
quality, cutting costs, and implementing early and
frequent releases.

Considerable progress has been made in automat-
ing unit testing used to verify the functional operation
of small individual units making up software, but
automation has made little headway in dealing with
integration testing of larger software programs com-
bining multiple modules that include user interface
(UI) screens or in dealing with system testing to catch
system-level errors.

A number of tools have become generally available
in the development workplace for automating inte-
gration testing and system testing. One example is
SeleniumWebDriver, which automatically executes a
web application test based on a prepared test script.
However, we note that currently, test design and veri-
fication of test results still involve a considerable
amount of manual labor. While tools supporting the
test design of some functional testing are available,
there are major barriers to introducing these tools in
the development workplace. Obstacles include the
need for testing staff to have specialized knowledge
of the tools and the testing technique that the tools
use, and the need to write descriptions in an unfamil-
iar language. In addition, verification of test results
requires a great deal of visual inspection by techni-
cians to ensure screens are displayed correctly and so
on, and manually checking a large number of test tri-
als one by one is extremely costly.

3. Research vision

With the goal of improving the QCD of test processes,

Fig. 3. Testing procedure.

Test
planning

Test management

Test design
Test execution

(Existing automation
tools are available.)

Verification of
test results

Test
reporting

3 NTT Technical Review

Feature Articles

our vision is to automate all testing during and after
integration testing from test design to verification of
test results, as shown in Fig. 4. We highlight the fol-
lowing two noteworthy features of this approach:

(1) Automating test design using design docu-
ments, source code, executable files and other
materials available at the development work-
site means that everything needed for the test
execution—test case list, test data, and execu-
tion script files—is automatically generated.
This effectively generates tests without errors
or omissions at relatively modest cost.

(2) Any problem or error in the test execution
results for each test case (application screen-
shots, etc.) is automatically detected. This
markedly reduces the amount of visual verifi-
cation work, prevents omissions from occur-
ring, and thus improves the quality of applica-
tions.

In the following sections, we introduce two tools
for automating the test design and verification of test
results: the integration testing design support tool
TesMa and the UI layout test support tool ULTDiff.
We discuss these tools in the context of an enterprise
application featuring a front-end web application
developed using the Macchinetta framework.

4. Integration testing design support
tool: TesMa

In order for end users to input data in a field on a
web application screen, we must ensure that the soft-
ware behaves as designed no matter what data are
entered in the field. For example, if the correct input
in the field must be a 10-digit number, the test design

must test for correct entries such as “0123456789”
but also test for the full range of potential incorrect
entries: “012345678a” (violates the numerical
requirement), “01234567890” (violates the number
of digits requirement), and “01234567890a” (violates
both the numerical and number of digits require-
ments). It is challenging to implement such a test
design without errors or omissions even with highly
skilled technicians, and the cost can be excessive.

To resolve this issue, we developed the integration
testing design support tool called TesMa [2] that
automatically generates test cases and test data need-
ed for integration testing enterprise applications from
the software design documents (Fig. 5). The latest
version of TesMa goes beyond generating test cases
and test data to automatically generate execution
scripts to automatically run the test cases and test
data. TesMa has the following features:

(1) The input for the tools is a set of design docu-
ments written according to set descriptive
rules. These documents are the results of the
design process, which is part of the existing
development process. It thus has the advan-
tage of being easy to introduce into the devel-
opment workplace.

(2) The tool generates a comprehensive set of test
cases, test data [3], and executable script files
[4] based on processing patterns and input
data variations. This helps to prevent omis-
sions from occurring in manually created test
designs and also generates the test data
required to execute each test case, making test
execution much easier.

These features of the test tool reduce the cost of
integration testing, while maintaining software quality

Fig. 4. Research vision.

Search

Click!

http://www.ntt.co.jp/
Search Screen OutputInput

Procedure

1 …

2 …

…

…

N …

Test data

Test script

Input Output

Login ID

Password
Click!

Click!

Content
1 …
2 ……

… …
N …

Test design, test implementation

Materials at
development site

Design documents,
source code,
repository,
executable files,
etc.

Test design
automation
technology

NTT
technology

Existing
technologies

Test design, test
implementation artifacts

Item

Test case list

Test execution

Automatic test
execution tool

Test results

Test result materials at
development site
(including automatically
executed results)

Test process artifacts

Automatic test
results

verification
technology

Test results verification

NTT
technology

Test results report

Item Pass/fail

4

Feature Articles

Vol. 15 No. 2 Feb. 2017

through a comprehensive test design.

5. UI layout testing support tool: ULTDiff

Web application testing is done to ensure screens
on various types of client devices—smartphones,
tablets, and personal computers—display correctly
for operating systems (OSs), browsers, and other
applications. The test results must also be verified.
For example, one might find that screens are dis-
played correctly on some devices, but buttons have

been pushed off screen on other devices. There is an
enormous range of terminals available, new model
smartphones are constantly being introduced, and
OSs are frequently updated. This makes it extremely
cumbersome and time-consuming to visually inspect
each and every application screen for errors when
verifying test results.

The ULTDiff tool addresses these problems, as
shown in Fig. 6, by automatically detecting missing
or displaced screen elements such as buttons. This not
only greatly reduces the amount of work required to

Fig. 5. Integration testing design support tool.

Input

1 …

2 …

… …

N …

Software design
documents

Integration
testing design
support tool

TesMa

For example:

Screen design
document Process flow diagram

Execution
script files

Test dataProcedureItem

Test case list

Output

Fig. 6. UI layout test support tool.

OutputInput

Reference device
(correct screens)

Test device
(comparison screens)

Exhaustively detect differences
between correct screen and
screens under test.

UI layout
testing

support tool
ULTDiff

Visualization of errors

Summary
report of
results

Input Output Results DeveloperChanges

Errors are highlighted on screen so they
can be visualized and not overlooked.

Input is a screenshot of the app
screen; no other input is required.

Omis-
sions

Omis-
sions

5 NTT Technical Review

Feature Articles

visually check for errors across the enormous range
and variety of application screens but also catches
errors that might otherwise be overlooked, and it
improves the quality of applications. The ULTDiff
tool has the following features:

(1) ULTDiff reduces the cost of manual detection
and prevents omissions by exhaustively
detecting the differences between a correct
screen and screens under test.

(2) It assists people to effectively decide whether
or not each detected difference is an error by
highlighting differences on a screen.

(3) It can be applied to many kinds of applications
and can be easily introduced to the develop-
ment process because it only needs screen
images as input and does not depend on spe-
cific implementation technology.

The combination of these features greatly reduces
the amount of work involved in detecting errors and
omissions when testing applications under develop-
ment on a diverse range of client devices and when
testing recently released applications on new model
devices. Moreover, when revising or adding new
functions to applications, ULTDiff can be used for
regression testing to make sure the older program-
ming still works with the new changes. ULTDiff sig-
nificantly reduces the man-hours associated with
each release and thus makes it possible to implement
rapid release cycles.

6. Future development

TesMa technology has already been adopted in over
100 software projects by NTT Group companies
domestic and foreign, and the tool’s ability to main-

tain excellent quality through comprehensive test
design while cutting costs is becoming apparent at
NTT development worksites. Meanwhile, ULTDiff
has been made available to several NTT Group com-
panies, and we continue to refine the tool based on
feedback from the development sites, with plans for a
general deployment in the near future.

In the future, we will be less reliant on massive
design manuals supporting the waterfall development
approach and will move toward test design support
based on existing resources such as source code for a
wide range of development processes. Without
depending on a specific development process, we
remain actively involved in research and develop-
ment that helps all of the development worksites.
Building on the QCD gains made so far, we are com-
mitted to steadily advancing software research and
development in the years ahead.

References

[1] G. Suzuki, A. Kanamaru, T. Iwatsuka, J. Katada, S. Okada, S. Mochi-
da, K. Natsukawa, K. Motohashi, T. Hishiki, T. Kaneko, K. Tanabe, H.
Izumoto, M. Sakai, K. Yamashita, and Y. Iwaki, “Improving the Effi-
ciency of Application Development Based on the Macchinetta Frame-
work,” NTT Technical Review, Vol. 15, No. 2, 2017.

 https://www.ntt-review.jp/archive/ntttechnical.php?contents=
ntr201702fa2.html

[2] H. Tanno, X. Zhang, K. Tabata, M. Oinuma, and K. Suguri, “Test
Automation Technology to Reduce Development Costs and Maintain
Software Quality,” NTT Technical Review, Vol. 12, No. 1, 2014.

 https://www.ntt-review.jp/archive/ntttechnical.php?contents=
ntr201401fa3.html

[3] H. Tanno and X. Zhang “Automatic Test Data Generation Based on
Domain Testing,” IPSJ SIG Notes, 2014-SE-186, No. 6, pp. 1–8,
2014.

[4] H. Tanno and X. Zhang “Test Script Generation Based on Software
Design Documents,” IEICE Technical Report, Vol. 115, No. 154, pp.
103–110, 2015.

https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201702fa2.html
https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201401fa3.html

6

Feature Articles

Vol. 15 No. 2 Feb. 2017

Haruto Tanno
Researcher, Software Engineering Project,

NTT Software Innovation Center.
He received a B.E. and M.E. in computer sci-

ence from The University of Electro-Communi-
cations, Tokyo, in 2007 and 2009. He joined NTT
in 2009. His interests include programming lan-
guages and software testing. He received the
Super Creator Award from the Information-tech-
nology Promotion Agency in 2008, paper awards
from the Information Processing Society of
Japan (IPSJ) in 2009, 2013, and 2016, and the
President’s Award from NTT in 2016. He is a
member of IPSJ.

Katsuyuki Natsukawa
Senior Research Engineer, Supervisor, Soft-

ware Engineering Project, NTT Software Inno-
vation Center.

He received an M.E. from Nara Institute of
Science and Technology in 1996. He joined NTT
in 1996. His current research interests include
software engineering.

Morihide Oinuma
Senior Research Engineer, Software Engineer-

ing Project, NTT Software Innovation Center.
He received a B.E. and M.E. in electrical engi-

neering from Keio University, Kanagawa, in
1984 and 1986. He joined NTT in 1986. His cur-
rent research interests include software engineer-
ing. He is a member of IPSJ.

