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1.   Introduction

With the rapid spread of new information and com-
munication services such as cloud computing, wire-
less communication, and high-definition video com-
munication services, the data traffic flowing through 
the optical network is expected to continue to 
increase. Along with this traffic growth, a further 
increase in transmission capacity over optical fiber is 
required. The NTT laboratories have been developing 
optical transmission technologies over the past 30 
years involving time division multiplexing, wave-
length division multiplexing, and digital coherent 
technology, and have succeeded in realizing a 
100-Tbit/s-class high transmission capacity per opti-
cal fiber in research, and a 10-Tbit/s-class transmis-
sion capacity in commercial large-capacity backbone 
optical transmission systems. 

To further increase the transmission capacity, it is 
necessary to increase the power input to an optical 
fiber. However, increasing the power too much will 
give rise to nonlinear optical effects and a fiber fuse 
phenomenon. Thus, there is an upper limit to the 

allowable optical power transmitted through a fiber. 
The capacity limit due to these physical limits is 
known to be around 100 Tbit/s, and we may reach this 
upper limit within the next decade in commercial 
communication systems. 

At NTT Network Innovation Laboratories, we have 
been promoting research on spatial multiplexing 
technology since 2009 in cooperation with related 
research groups within NTT, and in collaboration 
with other companies and universities, in order to 
realize the next generation ultra-high-capacity optical 
transmission technology.

Space division multiplexing (SDM)*1 is attracting 
attention as a state-of-the-art optical transmission 
technology that can increase the transmission capac-
ity by several orders of magnitude relative to a con-
ventional single-mode fiber (SMF) by spatially mul-
tiplexing optical signals in a transmission line. 
Advanced research is being conducted in various 

*1 SDM: An optical transmission technology that multiplexes and 
transmits optical signals using a spatial dimension. Global re-
search and development is progressing towards next generation 
high-capacity optical transmission technology.
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research institutions around the world. A schematic 
of an SDM optical transmission system using a multi-
core fiber (MCF) and a multi-mode fiber (MMF) as a 
transmission medium is shown as a representative 
example in Fig. 1(a). With SDM, we can increase the 
transmission capacity by N or M times that of SMFs 
currently being used in backbone optical networks, 
where N and M are the number of cores and modes, 
respectively. Various SDM optical transmission 
methods have been reported so far and are depicted in 
a matrix in Fig. 1(b).

The transmission capacity per optical fiber is plot-
ted as a function of transmission distance in Fig. 2. 
These examples have been demonstrated in recent 
transmission experiments using SDM technology. In 
2012, a transmission experiment reported a 305-Tbit/s 
capacity over a 10.1-km 19-core MCF, proving for 
the first time that the capacity could exceed the 
capacity limit of an SMF by using SDM technology. 
In the same year, NTT Network Innovation Laborato-
ries collaborated with optical device research groups 
in NTT, an optical fiber manufacturing company, and 
universities in Japan and Europe to demonstrate the 
world-first 1-Pbit/s transmission [1] using a one-ring 
structured 12-core MCF, which is an order of magni-
tude larger than the capacity limit of an SMF. The 
following year, in 2013, we demonstrated the first 

capacity distance product exceeding 1 Ebit/s x km by 
applying a bi-directional transmission scheme in a 
two-ring structured 12-core MCF to reduce inter-core 
crosstalk [2]. 

Although SDM optical transmission technologies 
have proven that they can exceed the capacity limit of 
a conventional SMF, it is necessary to further increase 
spatial multiplicity, that is, the number of cores or 
modes multiplexed in an optical fiber, to further 
increase capacity. Therefore, developing new tech-
nologies for massive spatial multiplexing is the next 
challenge.

2.   Towards dense space division 
multiplexing (DSDM)

We have been working to further increase the 
capacity of optical fiber transmission systems using 
SDM technology by developing new fundamental 
technologies with the goal of realizing dense space 
division multiplexing (DSDM)*2 with a spatial multi-
plicity of 30 or more. To establish DSDM long dis-
tance optical transmission using an MCF, we must 

*2 DSDM: High density SDM technology with spatial multiplicity 
above 30, which we proposed and demonstrated in 2014 for the 
first time.

Fig. 1.   SDM optical transmission technology.
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arrange 30 or more cores in an optical fiber with a 
cladding diameter within 250 μm, taking fiber 
strength and reliability into consideration. At the 
same time, each core should have an effective area of 
80 μm2 or more, which is equivalent to that of a con-
ventional SMF. Since the core arrangement in the 
optical fiber becomes dense, crosstalk between cores 
increases, which leads to the degradation of transmis-
sion quality. 

As an example, the inter-core crosstalk after 1000-
km transmission is shown in Fig. 3 as a function of 
spatial multiplicity. The vertical axis indicates the 
worst inter-core crosstalk in an MCF after 1000-km 
transmission for terrestrial optical communication 
systems. The higher a position is on the graph, the 
lower the crosstalk value is, which means that the 
effect of crosstalk from signals in other cores is small 
on long distance transmission characteristics. 

The dotted lines in the graph are the inter-core 
crosstalk values required for each modulation format, 
assuming a Q-factor penalty of 0.5 dB. The higher the 
multilevel degree, the larger the transmission capaci-
ty can be with the same resource, but the crosstalk 
requirement becomes stricter. For example, it is nec-
essary to suppress the inter-core crosstalk to less than 

–25 dB to apply a polarization division multiplexed 
16-quadrature amplitude modulation (16-QAM)*3 
format. As shown in Fig. 3, as we increase the number 
of cores by 7, 12, and 19, the core arrangement 
becomes dense, so the inter-core crosstalk increases. 
Therefore, we have set the spatial multiplicity of 30 
to 100 and the inter-core crosstalk of < –25 dB as the 
target area for achieving DSDM long distance optical 
transmission.

3.   World’s first DSDM optical transmission

As a first approach, we examined the combination 
of multi-core and multi-mode optical transmission. In 
mode-division multiplexed optical transmission, the 
application of multiple-input multiple-output 
(MIMO)*4 signal processing, a technique used in 

Fig. 2.   Transmission capacity per optical fiber as a function of transmission distance.
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*3 16-QAM: A modulation format that associates 16 values of digi-
tal signals with 16 types of intensity and phase combinations of 
the optical signals in a carrier wave, and transmits 4 bits per 
modulation.

*4 MIMO: A digital signal processing method used in practical 
wireless communication systems. Application to SDM transmis-
sion systems is being considered for the purpose of separating 
spatially coupled optical signals.
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commercial wireless communication systems, is 
being considered in order to separate optical signals 
between different modes that are coupled during 
propagation. The amount of computation required for 
MIMO signal processing is proportional to the mag-
nitude of the differential mode delay (DMD)*5. Since 
there is a limit to the load that can be tolerated by 
digital signal processing (DSP), it is necessary to sup-
press DMD. In addition, mode dependent loss 
(MDL)*6 has a tremendous effect on the transmission 
characteristics in mode-division multiplexed trans-
mission. 

While conducting research on multi-mode trans-
mission, we found that it was difficult to fully com-
pensate for the degradation caused by MDL with 
DSP, and MDL was one of the largest factors limiting 
the transmissible distance. As described above, 
advanced technology is essential even in mode-divi-
sion multiplexing itself, and it was extremely difficult 
to realize multi-core and multi-mode optical trans-
mission at the same time. Thus, there had been no 
reports on multi-core multi-mode transmission from 
any research institute at that time. 

With a view to solving these issues, we proposed a 
novel parallel MIMO time domain equalization 
method to reduce the load of DSP. Also, in coopera-
tion with an optical fiber manufacturer and universi-
ties, we developed a low-loss and low-crosstalk 
multi-core multi-mode optical fiber. Furthermore, in 

cooperation with research groups in NTT studying 
optical devices, we developed a multi-core multi-
mode fan-in/fan-out (FI/FO) device for spatial multi/
demultiplexing, a low-loss mode multi/demultiplexer 
based on a silica planar lightwave circuit (PLC), and 
an integrated optical receiver for SDM systems fabri-
cated using commercially available silica PLC tech-
nology. We combined these fundamental technolo-
gies and in 2014 successfully achieved multi-core 
multi-mode DSDM optical transmission for the first 
time in the world, with a spatial multiplicity of 36 
(12-core multiplexing × 3-mode multiplexing) [3]. 
The combination of the multi-core and multi-mode 
transmission greatly enhanced the spatial multiplicity 
because of the multiplication effect of the core and 
mode multiplexing. 

In 2015, we proposed a novel parallel MIMO fre-
quency domain equalization method to further reduce 
the complexity of DSP and moreover realized a 
graded-index type multi-core multi-mode optical 
fiber with an order of magnitude lower DMD. In 
addition, we realized a free-space optics type MDL 

QAM: quadrature amplitude modulation
QPSK: quadrature phase-shift keying
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*5 DMD: Difference in group delay time between modes. It is 
known that the DMD can be reduced by using the graded-index 
type refractive index distribution. Reducing DMD will reduce the 
load of digital signal processing in multi-mode transmission.

*6 MDL: Loss difference between multiple modes. It is one of the 
largest factors limiting the transmission distance in mode-divi-
sion multiplexed optical transmission.
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equalizer and a multi-mode optical amplifier with 
low mode dependency in gain, both of which greatly 
reduce the MDL in the optical transmission line. 
These DMD and MDL suppression technologies 
made it possible to achieve long distance multi-mode 
transmission, and this enabled us to successfully 
demonstrate the world-first long distance multi-core 
multi-mode DSDM optical transmission over 527 km 
[4]. A schematic diagram of the multi-core multi-
mode DSDM optical transmission setup we used in 
the experiment is shown in Fig. 4(a).

4.   World’s first multi-core DSDM long distance 
optical transmission

As another approach, we have also been conducting 
studies of high density MCF in a Japanese-European 
collaboration [5]. In our first study, we fabricated 
high density 30-core and 31-core MCFs about 10 km 
long and confirmed good transmission characteris-
tics. However, the crosstalk between cores was large, 

and thus, these MCFs were not suitable for long dis-
tance optical transmission. We improved the MCF 
design and fabricated a 32-core high density MCF 
51.4 km in length. With this MCF, we succeeded in 
suppressing the core-to-core crosstalk to less than 
–21.6 dB even after 1000-km transmission, and we 
reached the target area of DSDM transmission shown 
in Fig. 3 for the first time with a single-mode MCF.

In 2016, we demonstrated the first multi-core 
DSDM long distance optical transmission exceeding 
1600 km [6] using this low-crosstalk high density 
MCF. A schematic diagram of the multi-core DSDM 
optical transmission setup we used in the demonstra-
tion experiment is shown in Fig. 4(b). The long dis-
tance DSDM transmission with a spatial multiplicity 
higher than 30 and a transmission distance over 1000 
km was a world-first achievement and has been the 
only successful such demonstration up until now.

To use this multi-core DSDM optical transmission 
in a real system, a high density multi-core optical 
amplifier is essential. In cooperation with the 
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members of the EU-Japan project, we also conducted 
studies on MCF amplifiers and developed a 32-core 
cladding-pumped multi-core erbium/ytterbium-
doped fiber amplifier (MC-EYDFA) for the first time. 
Using the 32-core MCFs and the 32-core MC-EYD-
FA, we have constructed a 111.6-km 32-core inline 
amplified DSDM transmission setup and experimen-
tally verified good transmission characteristics over 
all 32 cores [7]. 

The spatial multiplicity versus transmission dis-
tance in SDM optical transmission reported so far is 
shown in Fig. 5. At the beginning of our study on 
DSDM, the highest spatial multiplicity reported in 
multi-core optical transmission was 19. For 1000-km-
class long distance optical transmission, the spatial 
multiplicity was even more limited, with 12 being the 
maximum. Under these circumstances, we succeeded 
in 2014 in carrying out the first DSDM optical trans-
mission with a spatial multiplicity above 30. More-
over, we extended the transmission distance from 40 
km to over 500 km, and then to over 1600 km with 
DSDM. More recently, other research institutes have 
subsequently studied DSDM, and DSDM with spatial 
multiplicity above 100 has been reported.

5.   Future directions

In this article, we introduced the latest trends in 
SDM optical transmission technology and the DSDM 

optical transmission system with efforts to further 
increase the transmission capacity for the next gen-
eration high-capacity optical communication tech-
nology. We will continue to promote the research and 
development of SDM optical transmission technolo-
gy as part of efforts to achieve an ultra-high-capacity 
long distance optical transmission system as the 
foundation for the future optical network.
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