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1.   Introduction

Sensitive magnetic field sensing has many potential 
applications in medical science and biology. Mag-
netic resonance imaging (MRI) is a standard tech-
nique to obtain three-dimensional (3D) images of 
materials by detecting their magnetic field informa-
tion. Magnetoencephalography provides a way to 
measure the electrical activity of the brain, and this 
has an important role in medical science. If we can 
improve the sensitivity of magnetic field sensors, we 
could characterize materials from high-resolution 3D 
imaging, or we could target the location of tumors 
before surgery by detecting small signals. 

There are many potential candidates to achieve a 
sensitive magnetic field sensor. One promising exam-
ple is the quantum bit (qubit*1), which has been the 
subject of much theoretical and experimental 
research. The technology for fabricating qubits has 
mainly been developed for the purpose of implement-
ing quantum computation. However, some types of 
qubits can be strongly coupled with external fields 
such as magnetic fields and electrical fields, so it is 
also possible to use qubits for sensing technology.  

2.   Superconducting flux qubit

Among the many possible candidates for qubit-
based field sensing, we have investigated a supercon-
ducting flux qubit for quantum metrology. A super-
conducting qubit is an artificial atom, so we can eas-
ily design and characterize the device with the desired 
parameters (a significant advantage to achieve scal-
ability [1]). 

The flux qubit is composed of a loop structure con-
taining three Josephson junctions*2 (Fig. 1(a)). With 
the application of magnetic flux (n+0.5)ϕ0, where ϕ0 
denotes the quantized magnetic flux and n an integer 
number, this device acts as a qubit. The resonant fre-
quency of this qubit can be tuned by applying mag-
netic flux, so a change in magnetic fields can be 
detected by measuring the resonant frequency. A 

*1	 Qubit: In classical computation, a bit to store information can 
represent either 0 or 1. However, a quantum bit (qubit) obeys 
quantum mechanics, so the state of a qubit can contain a super-
position of 0 and 1. 

*2	 Josephson junction: A structure composed of two superconduc-
tors coupled by a thin insulator. This induces a supercurrent that 
flows without applied voltage due to a tunneling effect.
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superconducting flux qubit has two states corre-
sponding to clockwise and anticlockwise persistent 
current states. When we apply ϕ0 magnetic flux, the 
transition energy from the ground state to the excited 
states reaches a minimum (Fig. 1(b)). The difference 
between the ground and excited state is called the tun-
neling energy. 

It is also possible to improve the sensitivity if we 
increase the number of superconducting flux qubits. 
In particular, if we create an entanglement*3 that does 
not exist in the classical world, we can achieve a sen-
sor that has in principle much better performance 
than any existing devices. For example, supercon-
ducting quantum interference devices (SQUIDs)*4 
are used in the medical sciences, but the sensitivity of 
an entanglement sensor composed of millions of 
superconducting flux qubits would be a few orders of 
magnitude higher than that of a SQUID [2].

3.   Coupling of microwave resonator and 
superconducting flux qubits

A microwave resonator is a natural way to achieve 
large-scale entanglement between multiple supercon-
ducting qubits [3]. When an LC (L = inductor, C = 
capacitor) circuit is fabricated using superconducting 
materials, the energy levels become quantized, so we 
can control a few microwave photons inside the reso-
nator. By initiating an interaction between the micro-
wave resonator and the superconducting qubits, we 
can generate an entanglement between the supercon-
ducting qubits, where the microwave photons medi-
ate the interaction between them (Fig. 2(a)) [4]. Thus, 
it is important to achieve strong coupling between the 
superconducting flux qubit and the microwave reso-
nator.

One way to increase the coupling strength between 
the superconducting qubits and the microwave reso-
nator is to use collective quantum effects*5. By fabri-
cating multiple superconducting flux qubits near the 
microwave resonator, the superconducting flux qubits 
show wave-like properties. The collective effect is 
one such property. This means that by coupling L 
superconducting qubits with the microwave resona-
tor, the coupling strength is enhanced by a factor of 
L0.5. In fact, 20 superconducting flux qubits were 
fabricated near a microwave resonator [5], and a fre-
quency shift to indicate such a collective effect was 
observed in spectroscopic data (Fig. 2(b)). However, 
to achieve a practical quantum device, we need to 
increase the number of superconducting flux qubits 
collectively coupled with the resonator, which is 
important to create a large entanglement between the 
superconducting flux qubits.

We fabricated a device consisting of 4300 super-
conducting flux qubits embedded in a microwave 
resonator (Fig. 3) [6]. By spectroscopically analyzing 
this device, we observed the enhancement of the cou-
pling strength due to the collective effect between the 
superconducting flux qubits and the microwave reso-
nator. This represents the largest number of coupled 

Fig. 1.   Superconducting flux qubit.

Superconducting circuit

Josephson junctions

(b) Qubit energy

Qubit energy (GHz)

Applied magnetic flux (mΦ0)

Tunneling
energy

−0.03 −0.02 −0.01 0.01 0.02 0.03

3.0

2.5

2.0

1.5

0.5

(a) Josephson junctions

1.01.0

*3	 Entanglement: In quantum mechanics, it is possible to create an 
entanglement that is a stronger correlation than any classical cor-
relation. Entanglement has been shown to play an important role 
when a quantum computer solves a difficult problem much faster 
than classical computers.

*4	 Superconducting quantum interference device (SQUID): A de-
vice composed of a superconducting loop that contains Joseph-
son junctions. This can be used as a magnetic field sensor.

*5	 Collective quantum effect: When quantum bits are coupled with 
a photon or a microwave photon, the ensemble of the qubits be-
haves like a wave. This phenomenon is called the collective ef-
fect.
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superconducting qubits realized so far and is a crucial 
step to realize a large entanglement between super-
conducting qubits.

4.   Spectroscopic measurements of the 
microwave resonator transmission properties

We placed our sample (sample A) in a dilution 
refrigerator operating at 20 mK and conducted spec-
troscopic measurements of the microwave resonator’s 

Fig. 2.   Coupling of microwave resonator and superconducting flux qubits.
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transmission properties. By changing the applied 
magnetic fields so they were perpendicular to the flux 
qubits, we observed a frequency shift of approxi-
mately 250 MHz (Fig. 4(a)). Such a frequency shift 
is observed due to the collective coupling between the 
superconducting qubits and the microwave resonator 
when the resonant frequencies between them are 
detuned (Fig. 2(b)). We succeeded in reproducing 
these experimental results using a simple theoretical 
model that includes collective coupling. We can infer 
from our numerical simulations that thousands of 
flux qubits were collectively coupled with the micro-
wave resonator in our experiment. 

Next, by using the second sample (sample B) fabri-
cated using different qubit conditions, we observed 
both positive and negative frequency shifts of tens of 
megahertz. These frequency shifts are known to 
occur when the tunneling energy of the superconduct-
ing flux qubit is smaller than the energy of the micro-
wave resonator (Fig. 2(b)). The observed frequency 
shift of sample B is one order of magnitude smaller 

than that of sample A (Fig. 4(b)). This is due to the 
fact that the tunneling energy of sample B is compa-
rable to the thermal energy of the environment, and 
the thermal effect suppresses the collective enhance-
ment of the coupling strength. By including the effect 
of the temperature, we succeeded in reproducing our 
experimental results with numerical simulations. We 
measured the temperature dependence of the resona-
tor frequency (Fig. 4(c)) and confirmed that an 
increase in the temperature suppressed the frequency 
shift of the resonator. Our results confirm that we can 
control the strength of the collective coupling by 
changing the temperature.

5.   Conclusion

We fabricated 4300 superconducting flux qubits 
embedded in a microwave resonator and achieved 
coherent coupling between them. We observed a 
large frequency shift of the resonator, indicating col-
lective quantum behavior of the superconducting 

Fig. 4.   Spectroscopic measurements of the microwave resonator’s transmission properties.
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qubits. It is worth mentioning that we could not 
observe vacuum Rabi splitting*6 that is an indication 
of strong coupling between the two systems. With the 
existing technology, we cannot fabricate homoge-
neous superconducting flux qubits, so the inhomoge-
neous resonant frequency of the qubits makes it dif-
ficult to observe the vacuum Rabi splitting. 

To address this problem, it is not possible to create 
a large entanglement between the qubits for the quan-
tum enhanced magnetic field sensor in the current 
device. One way to overcome the problem of the 
inhomogeneous broadening is to fabricate control 
lines to apply magnetic flux on the qubits, which 
would enable us to tune the resonant frequency of 
each qubit. Therefore, as a next step, we aim to 
achieve strong coupling between the superconducting 
flux qubits and a microwave resonator by tuning the 
frequency of the qubits. We will also attempt to gen-
erate a large entanglement between the qubits via the 
microwave resonator, which is useful for constructing 
an ultrasensitive magnetic field sensor. 
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