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1.   Introduction

Thanks to improvements in sensing technology and 
the rapid spread of smartphone applications and 
devices making up the Internet of Things (IoT), it is 
becoming possible to measure diverse types of data 
such as the movement of vehicles and things, human 
behavior, and environmental changes from just about 
anywhere. However, it is extremely difficult to extract 
and appropriately apply significant and useful infor-
mation lying latent in combinations of such diverse 
and massive amounts of data collected and stored in 
the above way.

NTT is researching and developing Ambient-AI as 
an artificial intelligence (AI) technology targeting 
IoT [1]. The idea behind this technology is to obtain 
information on everything under the sun (things, 
people, the environment) from diverse types of data 
collected and stored in real space and cyber space, 
perform instantaneous event detection, analysis, and 
prediction based on that information, and feed the 
results back to the real world.

A key technology supporting Ambient-AI is spatio-
temporal multidimensional collective data analysis, 
which has come to be constructed in order to model 
the spatio-temporal relationships among multidimen-
sional data having multiple attributes and to predict 

the place and time of a future event [2, 3]. This tech-
nology considers time, space, multidimensionality, 
and collectivity as four elements of data to foresee 
and gain insight on near-future events. Here, the idea 
behind collectivity is to estimate the spatio-temporal 
flow of people or vehicles only from aggregate data, 
as in the number of people or vehicles per cell, in 
which individual persons or cars cannot be identified. 

In this article, we introduce our latest research and 
development (R&D) efforts in extending this technol-
ogy. Starting with real-space information on people 
or vehicles collected from real-time observations, we 
input this information online into a simulation envi-
ronment in cyber space, model the spatio-temporal 
features of that information, instantaneously predict 
immediate congestion risk, and preemptively and 
optimally navigate the crowd to avoid that risk [4]. 

2.   Learning multi-agent simulation

Multi-agent simulation (MAS) is becoming 
increasingly popular as a technique for modeling the 
individual behavior of autonomously acting entities 
(= agents) such as people, cars, animals, and insects, 
modeling the micro-interaction of those agents with 
the surrounding environment, and analyzing and pre-
dicting macro-phenomena uncovered from the  
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interaction among multiple agents and their interac-
tion with the environment. In fields commonly 
referred to as complex systems, it may be possible to 
understand and describe individual micro-behavior, 
say of the people making up a society, neurons mak-
ing up the neural network of a brain, and molecules, 
atoms, and other elements in the atmosphere giving 
rise to various types of weather phenomena. 

However, analysis techniques using MAS have 
come to be widely researched for analyzing large-
scale systems in which the overall macro-behavior of 
things such as social activities, brain activities, and 
weather phenomena cannot be broken down into the 
behavior of individual elements. These techniques 
have recently found use in sensor networks, smart 
grids, and intelligent transport systems and in evacu-
ation guidance simulations for disaster preparedness. 

To give a specific example, we consider the naviga-
tion of tens of thousands of spectators exiting a sta-
dium. In this case, individual spectators are agents 
who leave the stadium from their current locations via 
exits and move toward train stations as their destina-
tions. In spectator movement, a commonly used 
model considers an average walking speed (e.g.,  
4 km/h) related to the attributes of individual specta-

tors such as age and gender and the attenuation of that 
walking speed on traversed roads in a manner propor-
tional to congestion conditions (crowd density). 
Crowd control manuals [5] state that passing becomes 
difficult and walking speed begins to drop at a crowd 
density of 1.2 persons/m2 and that movement comes 
to a halt at 4 persons/m2. Crowd density is also called 
service level [6], and the road width, space, and flow 
rate in pedestrian lanes that maintain a certain service 
level satisfying safety standards can be computed.

In conventional analysis methods using MAS, it is 
common to manually set parameters such as walking 
speed and navigation plans such as pedestrian paths 
and flow rate and to conduct simulations to evaluate 
beforehand the effects of those plans. Such methods 
have been applied when actually implementing 
crowd control (Fig. 1(a)). However, these parameters 
and navigation plans are limited to a small number of 
combinations decided beforehand and do not neces-
sarily match actual human movements or observed 
results based on navigation operations. 

Today, however, rapid progress in IoT and sensing 
technologies means that local people flow and con-
gestion conditions in the real world can be measured 
in real time using a variety of positioning means such 

Fig. 1.   Differences between conventional and learning MAS.
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as surveillance cameras, GPS (global positioning 
system), Wi-Fi*, and beacons. With this in mind, the 
NTT laboratories are moving forward on the develop-
ment of a learning MAS system that transfers events 
in real space such as people flow observed in real 
time to a simulation environment in cyber space, 
automatically learns modeled parameters based on 
observations, and predicts the spatio-temporal 
unfolding of events (Fig. 1(b)). 

The aim here is to establish technology based on the 
learning MAS to predict immediate congestion risk, 
automatically derive an optimal navigation plan 
online at any time to avoid that risk, and support 
navigation through crowd handlers and other person-
nel.

3.   Prediction of immediate congestion risk and 
automatic derivation of an optimal 

navigation plan

An example of an immediate prediction of conges-
tion risk is shown in Fig. 2. First, people-flow data are 
obtained from real-time observations and input into a 
simulation environment. The prediction process takes 
some of that data, say from the immediately preced-
ing 15 minutes, to simulate subsequent spatio-tempo-
ral behavior. That is, in combination with the spatio-
temporal multidimensional collective data analysis 
described above, it predicts with high accuracy spa-
tio-temporal congestion risk into the immediate 
future, that is, 5 minutes, 10 minutes, and 20 minutes 
later. In an example of the flow of spectators moving 
toward a stadium from nearby train stations, the pro-
cess predicts that congestion will occur 20 minutes 
later, particularly near the entrance on the north side 
of the stadium (Fig. 2). The next step is to automati-

cally generate potential navigation plans by computer 
to eliminate this congestion risk and to search for an 
optimal navigation plan (Fig. 3).

In this example, one navigation plan is to temporar-
ily close one of the six stadium entrances and direct 
spectators toward the other entrances (Plan B in the 
figure). However, a huge number of combinations is 
possible when considering which entrances to close 
and when and for how long to close each one, or 
whether to completely or partially close a particular 
entrance. This process therefore efficiently prunes the 
massive number of candidate navigation plans and 
discards those that would have no effect on naviga-
tion, those that cannot actually be put into operation 
at the site, and those that may generate confusion, and 
then immediately searches for an optimal navigation 
plan. 

Various criteria can be considered here for optimal-
ity such as the shortest time required for all spectators 
to get inside the stadium or the minimum time or area 
in which spectators are held up due to congestion. 
However, it is difficult to directly evaluate which 
navigation plan has an optimal criterion value, and it 
is unrealistic to perform an exhaustive search of this 
massive search space. 

To solve this problem, we use a machine learning 
technique called Bayesian optimization that effi-
ciently searches for promising candidates from a 
small number of search results to derive an optimal 
navigation plan. For example, with the search results 
of Fig. 3, this technique derives a navigation plan that 
closes two of the stadium entrances at the 25-minute 
point (Fig. 4). This plan can be presented to crowd 
handlers to help them navigate arriving spectators. 

*	 Wi-Fi is a registered trademark of Wi-Fi Alliance.

Fig. 2.   Example of immediate congestion risk prediction.

(a) Observed people flow
in the past 15 min

(b) Prediction after 5 min (c) Prediction after 20 min
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Here, we can expect spectator behavior to generally 
change due to such navigation, but not all spectators 
will necessarily comply with that navigation. Accord-
ingly, this technique takes into account continuous 
observations and predictions of new congestion risks 
to repeatedly search for an optimal navigation plan 
and perform actual crowd control in the same way as 
above through a feedback loop. 

4.   Examples of application to 
entering/exiting stadium

The results of simulations for a scene with 80,000 
spectators entering a stadium with and without opti-
mal navigation are shown in Fig. 5 for comparison 
purposes. The people flow at the point 1 hour and 20 

minutes after spectators begin to arrive at the station 
and make their way toward the stadium is shown in 
Fig. 5(a). For the case without navigation shown at 
the left of the figure, the concentration of nearby train 
stations on the north side of the stadium results in 
congestion at the entrances near those stations and the 
appearance on public roads of queues of spectators 
that are held up and cannot move forward. 

In contrast, for the case with navigation shown in 
the center of the figure, crowding at particular 
entrances is avoided by blocking access to north-side 
entrances at key locations, thereby minimizing the 
generation of queues on public paths. With the navi-
gation plan, all spectators were able to arrive and be 
inside the stadium at about the two-hour point, as 
shown in the center of Fig. 5(b). 

Fig. 3.   Automatic generation of candidate navigation plans and searching for optimal plan.

Fig. 4.   Automatically derived optimal plan.
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However, without navigation (left side of Fig. 5(b)), 
time is needed to naturally clear congestion, and it 
would be about another hour until all spectators were 
inside the stadium. A graph with the vertical axis 
representing the number of people waiting and the 
horizontal axis representing time is shown at the 
lower right of Fig. 5(a) and 5(b). It can be seen that 
with navigation, the number of people waiting is kept 
low. Therefore, determining how to minimize the 
number of people waiting is an important issue, par-
ticularly for events held during the hot summer 
months. The proposed technique is expected to be 
effective in this regard.

Next, we consider a scene of 80,000 spectators exit-
ing a stadium and making their way toward nearby 
stations. We examine, in particular, a scenario in 
which unforeseen situations (e.g., accidents) not 
envisioned in prior studies in conventional navigation 
planning occur in rapid succession at four locations 
within 20 minutes after spectators begin to exit 
(Fig. 6). It is assumed here that the flow of people 
walking toward the stations and the flow of people 
coming out of the stations become intertwined, that 

the widths of some roads are reduced (path narrowed) 
due, for example, to the arrival of emergency vehicles 
(locations A, B, and D in the figure), and that a road 
is closed (path closed) due to an accident (location 
C). 

The results of simulations performed to determine 
whether the proposed technique can derive an opti-
mal navigation plan even under such unforeseen 
conditions is shown in Fig. 7. First, simulation results 
are shown in Fig. 7(a) for the point 20 minutes after 
people begin exiting the stadium, when accidents at 
four locations occur. At this time, the flow of people 
is the same with or without navigation, but a red con-
gestion location starts to appear due to the effects of 
the path closure in the upper right portion of the map. 

Next, simulation results at 30 minutes are shown in 
Fig. 7(b). With navigation, the proposed technique 
clears congestion by directing people to a detour to 
avoid the congestion caused by the above path clo-
sure. It can be seen from the results for the point 2 
hours later in Fig. 7(d) that all spectators have arrived 
at their target stations. With no navigation, however, 
congestion occurs at various locations 1 hour and 20 

Fig. 5.   Simulation results with optimal navigation plans for entering stadium.

(a) 1 hour and 20 min later

(b) 2 hours later
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minutes later, as shown in Fig. 7(c). Even at 2 hours 
later as shown in Fig. 7(d), congestion has yet to be 
cleared, and compared with the results with naviga-
tion, many people have to wait for 30 minutes or 
longer. In this way, the proposed technology is not 
limited to the occurrence of accidents envisioned 
beforehand; it can also predict immediate congestion 
for the multiple and ongoing occurrence of unfore-
seen situations and automatically derive an optimal 

navigation plan at any time.

5.   Future outlook

People-flow simulation introduced in this article 
has been based for the most part on pseudo data gen-
erated from statistics on past numbers of train station 
users and other information. NTT, however, is devel-
oping a learning-oriented simulation environment 

Fig. 6.   What-if scenarios for exiting stadium.

Fig. 7.   Simulation results with optimal navigation plans for exiting stadium.

(b) 30 min later

(c) 1 hour and 20 min later (d) 2 hours later

(a) 20 min later
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based on actual measurements of people flow at 
actual event venues and stadiums. We expect the 
application of this technology to extend beyond peo-
ple flow to include risk prediction and optimal infra-
structure control for flows in various types of social 
infrastructures such as traffic flow, logistics, and even 
communications traffic. As we look forward to 2020, 
we will continue to measure flow in peripheral areas 
including large-scale event venues, train stations, and 
road networks and will work on making simulations 
increasingly detailed. Our aim through these R&D 
efforts is to achieve optimal crowd navigation tech-
nology that can deal with unforeseen situations.
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