
1 NTT Technical Review

1. Exact cover problems

Most people have had some experience with puz-
zles such as crosswords, Sudoku, and Rubik’s cubes.
Many computer science researchers have tried for
decades to design algorithms* that can solve these
puzzles by using computers. As a result, several effi-
cient algorithms have been developed that can solve
these puzzles much faster than humans can.

However, puzzles that are difficult for humans are
also difficult for computers. Rubik’s cube and Sudo-
ku are known to be NP-complete problems, and they
become drastically more difficult as the problem size
increases. For example, if we increase the number of
squares on each face of a Rubik’s cube to 16, 25,
36,…, then solving the puzzle requires exponentially
more time. This inherent difficulty of puzzles is why
researchers are continuing to pursue more efficient
algorithms that can solve large and complex puzzles.

We have developed a new algorithm that can effi-
ciently find all the solutions of an exact cover prob-
lem, a fundamental problem in combinatorics. An
example of an exact cover problem is to find a set of
rows of a binary matrix X (a matrix whose elements

are either 0 or 1), where the selected rows must con-
tain exactly one numeral 1 in every column. An
example of an exact cover problem is shown in Fig. 1.
If the matrix shown in the figure is given as the input,
then the set of rows (1, 3) has exactly one 1 in every
column and is thus a solution to the exact cover prob-
lem. An exact cover problem may have multiple solu-
tions. This example problem also has another solu-
tion (2, 3, 5). Our algorithm can find all of the solu-
tions to this exact cover problem.

Our algorithm can also be used to find all the solu-
tions to puzzles that can be formulated as exact cover
problems. A polyomino is a puzzle that involves
arranging tiles on a board using a set of pieces con-
sisting of square cells, where all pieces are used and
each cell on the board is covered by square cells, with
no spaces left uncovered and no pieces overlapping.
This is a typical example of a puzzle that can be for-
mulated and solved as an exact cover problem.

The example in Fig. 2 shows how tetromino puz-
zles, a kind of polyomino where every piece is made

*	 Algorithm: A computation procedure for solving a problem. A
computer can solve various problems by running algorithms.

Efficient Algorithm for Enumerating
All Solutions to an Exact Cover
Problem
Masaaki Nishino, Norihito Yasuda, Shin-ichi Minato,
and Masaaki Nagata

Abstract
We introduce an algorithm that finds all solutions to an exact cover problem. Many real-world tasks

including designing apartment layouts and electric circuits can be formulated and solved as exact cover
problems. Our algorithm can solve exact cover problems up to 10,000 times faster than the previous
method. Moreover, our method compresses and stores all solutions and so can efficiently find the solu-
tions that satisfy several constraints. Therefore, our algorithm can efficiently find good solutions to exact
cover problems found in the real world.

Keywords: algorithm, data structure, exact cover problem

Feature Articles: Communication Science that Enables
corevo®—Artificial Intelligence that Gets Closer to People

2

Feature Articles

Vol. 15 No. 11 Nov. 2017

by connecting four square cells, can be formulated as
an exact cover problem. Every column of the problem
matrix corresponds to a cell of the 4×4 input board
(thus, there are 16 columns), and every row corre-
sponds to an arrangement of a piece. If the cell cor-
responding to the j-th column is covered by the
arrangement of a piece corresponding to the i-th row,
we set matrix element xij to 1. Otherwise, we set xij to
0. A solution to the exact cover problem formulated
in this way represents a set of arrangements of pieces
covering all of the cells on the board with no overlap-
ping pieces. Hence, it is a solution to the tetromino
puzzle.

Other than puzzles, several real-world problems
can be formulated and solved as exact cover prob-
lems. For example, designing the layout of an apart-
ment can be regarded as solving a polyomino puzzle,
where every piece corresponds to a room. The prob-
lem of designing the layout of an electric circuit can
also be formulated and solved as an exact cover prob-
lem that is similar to a polyomino puzzle. Hence, our
algorithm can find good solutions to these problems.

2. Algorithm for solving exact cover problems

Exact cover problems are known to be NP-com-

plete. Donald E. Knuth’s algorithm DLX is accepted
as a state-of-the-art algorithm for finding all solutions
to an exact cover problem [1]. DLX solves a problem
by performing an exhaustive search. Given input
binary matrix X, DLX selects the first row and checks
whether or not it is a solution to the exact cover prob-
lem. If it is not a solution, then it selects the pair of the
first and second rows and checks whether or not that
combination is a solution. DLX repeatedly adds rows
to the current set of rows and checks whether it is a
solution. If adding the i-th row to the current set
makes more than two 1’s appear in a column, then it
cannot be a solution. Therefore, DLX removes the
most recently added row from the set and adds a dif-
ferent row to the set to continue the search procedure.
In this way, algorithm DLX finds all solutions by
repeatedly adding and deleting rows to the set of rows
to check all possible combinations of rows. Although
the exhaustive search procedure is straightforward,
DLX accelerates the search by exploiting a special-
ized data structure.

DLX can efficiently find all solutions to an exact
cover problem if the number of solutions is limited.
However, since it is an exhaustive search method, it
takes an excessive amount of time if there are many
solutions. Real-world exact cover problems some-
times have a huge number of solutions. For example,
small polyomino puzzles can have more than one bil-
lion solutions.

Our new algorithm improves DLX to achieve prac-
tical speeds even when there are huge numbers of
solutions [2]. The key idea of the proposed algorithm
is to store all the solutions found in a search. If an
exact cover problem has many solutions, then it is
highly likely that they will be similar in several ways.
For example, there are many solutions to a polyomino
puzzle that has the same placement of pieces on the
left half of the input board. If we memorize all the
solutions, they can be used as hints to find similar
solutions and thus accelerate the search procedure.

Although storing all the solutions may increase the
search speed, memorizing billions of solutions in a
naïve manner is unrealistic. Our algorithm uses the
data structure called a zero-suppressed binary deci-
sion diagram (ZDD) to store the set of found solu-
tions. A ZDD represents the set of solutions as a
directed graph. We show in Fig. 3(b) an example ZDD
that represents the set of two solutions (Fig. 3(a)) of
the tetromino puzzle in Fig. 2. This ZDD has two
paths that start from the root node and end at terminal
node . These two paths correspond to the two solu-
tions. Since a ZDD shares partial paths, it yields a

Fig. 1. An exact cover problem.

1

2

3

4

5

The set of rows (1, 3) is a
solution to the problem
represented by the matrix.

1

1

0

0

0

1

1

0

0

0

1

0

0

1

1

0

0

1

1

0

1

0

0

0

1

0

0

1

1

0

A B C D E F

Fig. 2. Example of polyomino (tetromino) puzzle.

Board

Set of pieces

Solution

3 NTT Technical Review

Feature Articles

small graph that can represent huge numbers of solu-
tions. The ZDD in the figure shares two common
edges of paths in order to reduce the size of the graph.

For example, a tetromino tiling problem with a
board size of 10×10 has 7,213,560,548,906,621 solu-
tions. If we use the naïve representation, the com-
puter would require 100 petabytes (1018 bytes) of
memory. In contrast, with our ZDD approach, the set
is represented as a directed graph with 16,476,396
nodes. Such a ZDD requires only 300 megabytes (106
bytes) of memory and could therefore be handled by
a modern smartphone. This compressed representa-
tion drastically speeds up the computation process.
Our method is up to 10,000 times faster than DLX at
finding all solutions to exact cover problems. More-
over, our algorithm is the first one capable of finding
all the solutions to a tetromino tiling problem with
a 12×12 board size. We confirmed that there are
13,664,822,582,333,502,156,627,512 solutions to
the problem.

3. Application to real-world problems

Since our method represents the set of found solu-
tions as a ZDD, we quickly identify solutions that
satisfy several conditions. With this feature, our

method can find good solutions to real-world prob-
lems. For example, the problem of designing the
layout of an apartment is known to be an exact cover
problem [3]. By using our algorithm to construct a
ZDD that represents the set of all possible floor plans,
and then interactively adding conditions that match
the buyer’s requirements, we can efficiently find sat-
isfactory arrangements. A demonstration system that
uses our algorithm to find acceptable apartment lay-
outs is shown in Fig. 4. Because our algorithm can
find all possible room arrangements for an apartment,
we can browse them as a list. Moreover, we can add
conditions on possible floor plans and efficiently
identify floor plans that satisfy the additional condi-
tions.

4. Conclusion

Our new algorithm for solving exact cover prob-
lems is fast and can efficiently store all the solutions.
These features enable the interactive discovery of
desirable solutions by setting conditions in practical
situations, which is especially beneficial for problems
such as finding a desired floor plan. We are planning
to improve the data structure in order to find the opti-
mum solutions to practical exact cover problems.

Fig. 3. ZDD representing a set of solutions to an exact cover problem.

Root node

Terminal node

Path corresponding
to the left solution

Path corresponding to
the right solution

Share the same part
to reduce the size of
the ZDD.

(b) ZDD representing the set of paths

(a) Set of solutions

4

Feature Articles

Vol. 15 No. 11 Nov. 2017

References

[1]	 D. E. Knuth, “Dancing Links,” Millennial Perspectives in Computer
Science, pp. 189–214, 2000.

[2]	 M. Nishino, N. Yasuda, S. Minato, and M. Nagata, “Dancing with

Decision Diagrams: A Combined Approach to Exact Cover,” Proc. of
the 31st AAAI Conference on Artificial Intelligence, San Francisco,
CA, USA, Feb. 2017.

[3]	 A. Takizawa, Y. Miyata, and N. Katoh, “Enumeration of Floor-plans
Based on a Zero-suppressed Binary Decision Diagram,” International
Journal of Architectural Computing, Vol. 13, No. 1, pp. 25–44, 2015.

Fig. 4. Demonstration system for designing layouts of an apartment.

(a) List all possible room
layouts for a 3-bedroom
apartment.

(b) Impose additional
constraints for narrowing
candidate solutions.

(c) List the solutions that
satisfy constraints.

(A Japanese-style room faces east.)

(A bathroom is close to entrance.)

(A living room faces south.)

5 NTT Technical Review

Feature Articles

Masaaki Nishino
Research Scientist, NTT Communication Sci-

ence Laboratories.
He received a B.E., M.E., and Ph.D. in infor-

matics from Kyoto University in 2006, 2008, and
2014. He joined NTT in 2008. His current
research interests include data structures, natural
language processing, and combinatorial optimi-
zation.

Shin-ichi Minato
Professor, Graduate School of Information Sci-

ence and Technology, Hokkaido University.
He received a B.E., M.E., and D.E. in informa-

tion science from Kyoto University in 1988,
1990, and 1995. He worked in the NTT laborato-
ries from 1990 until 2004. He was a visiting
scholar in the Computer Science Department at
Stanford University, USA, in 1997. He joined
Hokkaido University as an associate professor in
2004, and has been a professor since October
2010. He has also worked as a visiting professor
at the National Institute of Informatics since
2015. His research interests include efficient
representations and manipulation algorithms for
large-scale discrete structures such as Boolean
functions, sets of combinations, sequences, and
permutations. He was a research director of the
JST ERATO MINATO Discrete Structure
Manipulation System Project from 2009 to 2016
and is now leading a Grant-in-Aid for Scientific
Research (KAKENHI) project of the Japan Soci-
ety for the Promotion of Science (JSPS) until
2020. He is a senior member of the Institute of
Electronics, Information and Communication
Engineers (IEICE) and the Information Process-
ing Society of Japan (IPSJ), and a member of the
Institute of Electrical and Electronics Engineers
(IEEE) and the Japanese Society for Artificial
Intelligence (JSAI).

Norihito Yasuda
Senior Researcher, NTT Communication Sci-

ence Laboratories.
He received a bachelor’s degree in integrated

human studies and a master’s degree in human
and environmental studies from Kyoto Universi-
ty in 1997, and 1999, and a D.Eng. in computa-
tional intelligence and system science from the
Tokyo Institute of Technology in 2011. He joined
NTT in 1999. He also worked as a research asso-
ciate professor with the Graduate School of
Information Science and Technology, Hokkaido
University, in 2015. His current research interests
include discrete algorithms and natural language
processing.

Masaaki Nagata
Senior Distinguished Researcher, Group

Leader, NTT Communication Science Laborato-
ries.

He received a B.E., M.E., and Ph.D. in infor-
mation science from Kyoto University in 1985,
1987, and 1999. He joined NTT in 1987. His
research interests include morphological analy-
sis, named entity recognition, parsing, and
machine translation. He is a member of IEICE,
IPSJ, JSAI, the Association for Natural Lan-
guage Processing, and the Association for Com-
putational Linguistics.

