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1.   Exact cover problems

Most people have had some experience with puz-
zles such as crosswords, Sudoku, and Rubik’s cubes. 
Many computer science researchers have tried for 
decades to design algorithms* that can solve these 
puzzles by using computers. As a result, several effi-
cient algorithms have been developed that can solve 
these puzzles much faster than humans can. 

However, puzzles that are difficult for humans are 
also difficult for computers. Rubik’s cube and Sudo-
ku are known to be NP-complete problems, and they 
become drastically more difficult as the problem size 
increases. For example, if we increase the number of 
squares on each face of a Rubik’s cube to 16, 25, 
36,…, then solving the puzzle requires exponentially 
more time. This inherent difficulty of puzzles is why 
researchers are continuing to pursue more efficient 
algorithms that can solve large and complex puzzles.

We have developed a new algorithm that can effi-
ciently find all the solutions of an exact cover prob-
lem, a fundamental problem in combinatorics. An 
example of an exact cover problem is to find a set of 
rows of a binary matrix X (a matrix whose elements 

are either 0 or 1), where the selected rows must con-
tain exactly one numeral 1 in every column. An 
example of an exact cover problem is shown in Fig. 1. 
If the matrix shown in the figure is given as the input, 
then the set of rows (1, 3) has exactly one 1 in every 
column and is thus a solution to the exact cover prob-
lem. An exact cover problem may have multiple solu-
tions. This example problem also has another solu-
tion (2, 3, 5). Our algorithm can find all of the solu-
tions to this exact cover problem.

Our algorithm can also be used to find all the solu-
tions to puzzles that can be formulated as exact cover 
problems. A polyomino is a puzzle that involves 
arranging tiles on a board using a set of pieces con-
sisting of square cells, where all pieces are used and 
each cell on the board is covered by square cells, with 
no spaces left uncovered and no pieces overlapping. 
This is a typical example of a puzzle that can be for-
mulated and solved as an exact cover problem. 

The example in Fig. 2 shows how tetromino puz-
zles, a kind of polyomino where every piece is made 

*	 Algorithm: A computation procedure for solving a problem. A 
computer can solve various problems by running algorithms.
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by connecting four square cells, can be formulated as 
an exact cover problem. Every column of the problem 
matrix corresponds to a cell of the 4×4 input board 
(thus, there are 16 columns), and every row corre-
sponds to an arrangement of a piece. If the cell cor-
responding to the j-th column is covered by the 
arrangement of a piece corresponding to the i-th row, 
we set matrix element xij to 1. Otherwise, we set xij to 
0. A solution to the exact cover problem formulated 
in this way represents a set of arrangements of pieces 
covering all of the cells on the board with no overlap-
ping pieces. Hence, it is a solution to the tetromino 
puzzle.

Other than puzzles, several real-world problems 
can be formulated and solved as exact cover prob-
lems. For example, designing the layout of an apart-
ment can be regarded as solving a polyomino puzzle, 
where every piece corresponds to a room. The prob-
lem of designing the layout of an electric circuit can 
also be formulated and solved as an exact cover prob-
lem that is similar to a polyomino puzzle. Hence, our 
algorithm can find good solutions to these problems. 

2.   Algorithm for solving exact cover problems

Exact cover problems are known to be NP-com-

plete. Donald E. Knuth’s algorithm DLX is accepted 
as a state-of-the-art algorithm for finding all solutions 
to an exact cover problem [1]. DLX solves a problem 
by performing an exhaustive search. Given input 
binary matrix X, DLX selects the first row and checks 
whether or not it is a solution to the exact cover prob-
lem. If it is not a solution, then it selects the pair of the 
first and second rows and checks whether or not that 
combination is a solution. DLX repeatedly adds rows 
to the current set of rows and checks whether it is a 
solution. If adding the i-th row to the current set 
makes more than two 1’s appear in a column, then it 
cannot be a solution. Therefore, DLX removes the 
most recently added row from the set and adds a dif-
ferent row to the set to continue the search procedure. 
In this way, algorithm DLX finds all solutions by 
repeatedly adding and deleting rows to the set of rows 
to check all possible combinations of rows. Although 
the exhaustive search procedure is straightforward, 
DLX accelerates the search by exploiting a special-
ized data structure.

DLX can efficiently find all solutions to an exact 
cover problem if the number of solutions is limited. 
However, since it is an exhaustive search method, it 
takes an excessive amount of time if there are many 
solutions. Real-world exact cover problems some-
times have a huge number of solutions. For example, 
small polyomino puzzles can have more than one bil-
lion solutions. 

Our new algorithm improves DLX to achieve prac-
tical speeds even when there are huge numbers of 
solutions [2]. The key idea of the proposed algorithm 
is to store all the solutions found in a search. If an 
exact cover problem has many solutions, then it is 
highly likely that they will be similar in several ways. 
For example, there are many solutions to a polyomino 
puzzle that has the same placement of pieces on the 
left half of the input board. If we memorize all the 
solutions, they can be used as hints to find similar 
solutions and thus accelerate the search procedure.

Although storing all the solutions may increase the 
search speed, memorizing billions of solutions in a 
naïve manner is unrealistic. Our algorithm uses the 
data structure called a zero-suppressed binary deci-
sion diagram (ZDD) to store the set of found solu-
tions. A ZDD represents the set of solutions as a 
directed graph. We show in Fig. 3(b) an example ZDD 
that represents the set of two solutions (Fig. 3(a)) of 
the tetromino puzzle in Fig. 2. This ZDD has two 
paths that start from the root node and end at terminal 
node . These two paths correspond to the two solu-
tions. Since a ZDD shares partial paths, it yields a 

Fig. 1.   An exact cover problem.
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Fig. 2.   Example of polyomino (tetromino) puzzle.
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small graph that can represent huge numbers of solu-
tions. The ZDD in the figure shares two common 
edges of paths in order to reduce the size of the graph. 

For example, a tetromino tiling problem with a 
board size of 10×10 has 7,213,560,548,906,621 solu-
tions. If we use the naïve representation, the com-
puter would require 100 petabytes (1018 bytes) of 
memory. In contrast, with our ZDD approach, the set 
is represented as a directed graph with 16,476,396 
nodes. Such a ZDD requires only 300 megabytes (106 
bytes) of memory and could therefore be handled by 
a modern smartphone. This compressed representa-
tion drastically speeds up the computation process. 
Our method is up to 10,000 times faster than DLX at 
finding all solutions to exact cover problems. More-
over, our algorithm is the first one capable of finding 
all the solutions to a tetromino tiling problem with  
a 12×12 board size. We confirmed that there are  
13,664,822,582,333,502,156,627,512 solutions to 
the problem. 

3.   Application to real-world problems

Since our method represents the set of found solu-
tions as a ZDD, we quickly identify solutions that 
satisfy several conditions. With this feature, our 

method can find good solutions to real-world prob-
lems. For example, the problem of designing the 
layout of an apartment is known to be an exact cover 
problem [3]. By using our algorithm to construct a 
ZDD that represents the set of all possible floor plans, 
and then interactively adding conditions that match 
the buyer’s requirements, we can efficiently find sat-
isfactory arrangements. A demonstration system that 
uses our algorithm to find acceptable apartment lay-
outs is shown in Fig. 4. Because our algorithm can 
find all possible room arrangements for an apartment, 
we can browse them as a list. Moreover, we can add 
conditions on possible floor plans and efficiently 
identify floor plans that satisfy the additional condi-
tions.

4.   Conclusion

Our new algorithm for solving exact cover prob-
lems is fast and can efficiently store all the solutions. 
These features enable the interactive discovery of 
desirable solutions by setting conditions in practical 
situations, which is especially beneficial for problems 
such as finding a desired floor plan. We are planning 
to improve the data structure in order to find the opti-
mum solutions to practical exact cover problems.

Fig. 3.   ZDD representing a set of solutions to an exact cover problem.
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Fig. 4.   Demonstration system for designing layouts of an apartment.

(a) List all possible room
layouts for a 3-bedroom
apartment.

(b) Impose additional
constraints for narrowing
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(c) List the solutions that
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