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1.   Calculating the meaning of words

Many challenges still need to be overcome to reach 
the stage where computers can accurately understand 
and manipulate natural language at the same level as 
human beings. In particular, it is a difficult problem 
for computers to correctly understand semantic rela-
tionships between words. However, a method called 
word embedding—a technique enabling computers to 
understand the semantic relationships between 
words—is attracting a lot of attention from research-
ers and engineers in the natural language processing 
field (Fig. 1). 

This technique was originally developed in the 
1980s [1], but there has been a revival with the recent 
development of deep learning methods. More pre-
cisely, the method proposed by Mikolov et al. [2] has 
empirically proven that word embedding vectors can 
be trained within a feasible run-time even if the size 
of training data is very large, for example, web-scale 
data. Thus, the method can capture very accurate 
semantic relationships between words with the help 
of large-scale text data since such large-scale data 
should implicitly contain information equivalent to 
the common sense of human beings.

As a simple example for explaining the usefulness 
of word embedding vectors, computers can estimate 
the meanings of words by the vector calculations 

among the word embedding vectors. Suppose we ask 
someone “Which word has the most appropriate rela-
tion to the word ‘Germany,’ if the word is based on the 
same relation existing between ‘France’ and ‘wine’?” 
Many people would answer “beer,” for instance. Of 
course there is no unique correct answer for this ques-
tion, and some people might say that “beer” is not a 
correct answer in his/her view. However, many peo-
ple feel that “beer” is an acceptable answer. 

These days, computers are becoming capable of 
developing such common sense or knowledge of 
human beings with the help of word embedding vec-
tors. The most important point here is that this type of 
intuitive guess—similar to that done by human 
beings—is now manageable for computers.

Traditionally, the approach used by computers to 
identify the semantics of words involved the use of 
hand-made semantic dictionaries. The essential dif-
ference from such traditional dictionary-based meth-
ods with the word embedding approach is coverage 
and whether the method involves an automatic or 
hand-made construction. It is easily imaginable that 
the traditional dictionary-based methods can solve 
semantic problems with high accuracy if the diction-
ary has information on the given problems; if not, 
dictionary-based methods are not effective for solv-
ing such problems. Moreover, a large cost may be 
required to keep updating the dictionary to improve 
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the coverage. 
For example, a computer might not be able to solve 

the above example of beer using a dictionary-based 
method since the importance of such common sense 
is relatively low, and thus, it might not be included in 
the dictionary. In contrast, word embedding vectors 
can be automatically generated from a large amount 
of text data, and no human cost is required for main-
tenance. Moreover, conceptually, information on all 
the words appearing in the training data can be stored 
in the embedding vectors. In fact, word embedding 
can easily handle millions of words. This fact implies 
that the word embedding method can handle a much 
larger number of words than dictionary-based meth-
ods (Fig. 2).

2.   Usefulness of word embedding vectors 
for computers

Word embedding vectors can be utilized in many 
natural language processing applications such as 
machine translation, question answering, information 
retrieval, and document summarization. However, we 
sometimes encounter several inconvenient points 
when trying to apply word embedding vectors to real 

systems. For example, there are a lot of random fac-
tors when word embedding vectors are constructed 
using conventional methods. Therefore, the resultant 
word embedding vectors lack reproducibility, mean-
ing they always differ from each other when many 
trials are conducted. 

In another example, we have to completely retrain 
embedding vectors in situations where we need 
embedding vectors with distinct numbers of dimen-
sions, since the dimensions of word embedding vec-
tors can be pre-defined before starting the training, 
and different applications often prefer their own num-
bers of dimensions. This is an example indicating that 
an advanced technology cannot always be easily 
applied to real world systems. To overcome this 
inconvenience of low usability, we have developed 
several methods that have high usability [3–5]. In the 
remainder of this article, we explain one of our meth-
ods for significantly reducing the memory require-
ments of word embedding vectors [5].

3.   Method for reducing memory requirements

We first explain the usefulness of reducing memory 
requirements. Suppose we are building a dialogue 

Fig. 1.   Word embedding vectors.
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system in robots used mainly for communicating 
with users. In this case, we aim to put as many words 
into the system as possible since it is nearly impos-
sible for the system to appropriately process unknown 
words. However, there is a trade-off between perfor-
mance and memory requirements in general. Namely, 
the amount of required memory storage to store all of 
the word embedding vectors becomes a large prob-
lem when we add a large number of words into the 
systems. 

For example, let us consider the case when utilizing 
three million words and a 300-dimensional vector is 
assigned to each word. Here, we assume that we need 
a 4-byte memory to represent a single precision float-
ing point number. Then the memory requirement for 
representing overall word embedding vectors 
becomes 3,000,000 (words) x 300 (dimensions) x 4 
(bytes) = 3,600,000,000 (bytes). This means that it 
requires 3.4 GB of memory. We emphasize that we 
need 3.4 GB of memory only for a single module, not 
for an entire system. This is unacceptably large in 
general.

Here, we assume that memory requirements are 
one-hundredth, that is, 34 MB, of the above amount. 
Then the total cost of memory storage integrated into 
robots can be significantly reduced. This actual cost 
reduction is essentially the most important factor in a 
real world product. In addition, we can easily inte-
grate word embedding vectors into applications on 
mobile devices. Less memory usage also leads to 

lower power consumption even though the memory 
storage in mobile devices may increase rapidly in the 
near future. Consequently, we can expect various 
positive effects for real world applications by merely 
developing a means of reducing the memory require-
ments.

4.   Method

Our method for reducing the memory requirements 
consists of a combination of several machine learning 
techniques such as group regularization, dual decom-
position, augmented Lagrangian methods, and clus-
tering. We do not describe these techniques in detail 
here but rather briefly explain the essence of our 
method. As described previously, word embedding 
vectors are generated from large training data. More 
precisely, what the method is actually trying to do 
during the learning process is to find appropriate val-
ues in the embedding vectors assigned to each word 
by minimizing the given objective function. The basic 
idea of our method is as follows: Suppose we observe 
that a certain value sequence pattern, for example, 
(0.3, –0.2, 0.1, 0.5), appears many times in the 
obtained embedding vectors. In this situation, we can 
discard these patterns with no information loss by 
preserving a single value sequence pattern among 
them and adding information consisting of appear-
ance of the same value sequence pattern to the 
locations where all the same value sequence patterns 
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appear. Then, we can reduce the overall memory 
requirements if the memory requirement of remem-
bering where the value sequence patterns appear is 
smaller than remembering the original value sequence 
patterns (Fig. 3). 

By implementing this idea, we can continue to 
reduce the overall memory requirements if the num-
ber of distinct value sequence patterns in the word 
embedding vectors gets smaller and smaller. Unfortu-
nately, however, none of the conventional methods 

automatically generate such convenient value 
sequence patterns. Therefore, we have built a method 
that can force the system to produce the word embed-
ding vectors under the condition of constructing word 
embedding vectors with pre-defined K distinct value 
sequence patterns while maintaining the perfor-
mance. Using this method, we can produce word 
embedding vectors within the memory desired by the 
users (Fig. 4).

Word embedding vectors are always constructed under the constraint of a restricted number (K)
of value sequence patterns.
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5.   Future direction

We are conducting research with the objective of 
having the most advanced research results become 
basic technologies that are used in real world systems 
including artificial intelligence related systems. It is 
possible to directly and indirectly support improve-
ments of actual systems being used by further devel-
oping the basic technologies used in the systems. 
Thus, our final goal is to develop many basic tech-
nologies that offer high usability for computers and 
system developers, which we believe to be one of the 
most important characteristics of basic technologies.
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