
1 NTT Technical Review

1.   Introduction

Container-based virtualization technologies (here-
inafter, container technologies) have gained attention 
in recent years, and the opportunities for their use 
have been increasing. Container technologies stand in 
contrast to virtual machine technologies from the 
standpoint of virtualization of the software execution 
environment. This set of technologies has lower over-
head than hypervisor-based virtualization technolo-
gies, which places guest operating systems (OSs) in 
an intermediate layer, so launching and stopping con-
tainers is extremely fast. 

Improvements to these technologies such as the 
addition of functions are also happening at a vigorous 
pace. Because container technologies generate a large 
quantity of containers within the same environment 
for an actual use case, and these containers are cre-
ated and deleted frequently, container management is 
complex. As a result, open source software (OSS) for 
container management and execution has been pro-
posed. Docker, Kubernetes, and etcd are introduced 
in this article as examples of such OSS platforms.

Next, we describe OSS in the field of artificial intel-
ligence (AI). Here, we introduce deep learning frame-
works, which are execution environments for deep 

learning techniques that have rapidly gained wide-
spread use in recent years. Efforts to advance frame-
works that support parallel distributed processing 
have also increased recently due to the growth of 
large-scale data models and the need to improve pro-
cessing speeds. In this article, we present an overview 
of representative deep learning frameworks and 
examine technologies supporting their use, for exam-
ple, graphics processing units (GPUs) for parallel 
distributed deep learning and high-speed intercon-
nects.

2.   Container technologies

In this section, we present an overview and describe 
examples of container technologies.

2.1   Overview of container-based virtualization
A set of technologies called container-based virtu-

alization has been gaining attention in recent years. 
With container-based virtualization, only applica-
tions needed for services are retained between mul-
tiple virtual servers, and the virtual servers share an 
OS kernel (Fig. 1). In contrast to hypervisor-centered 
hardware emulation-based virtualization, container-
based virtualization has little overhead that comes 

Open Source Software Efforts to 
Transform IoT/AI Services
Jun-ya Kato, Hitoshi Mitake, Akihiro Suda, 
Hideki Yamada, Kengo Okitsu, and Sekitoshi Kanai

Abstract
The NTT laboratories have been focusing on expanding the use and development of open source soft-

ware (OSS), primarily through the NTT Software Innovation Center (NTT SIC). NTT’s active contribu-
tions to OSS communities such as OpenStack and Apache Hadoop have yielded productive results with 
refinement of the company’s own technologies and training of personnel. Meanwhile, the wave of OSS 
is steadily spreading to new fields, including virtualization and artificial intelligence. NTT SIC is also 
engaged in these efforts, and its contributions are beginning to bear fruit. In this article, NTT SIC’s work 
in OSS is introduced from a technical perspective and its community activities are also described.

Keywords: container, deep learning, parallel distributed processing

Feature Articles: OSS Activities in Era of Internet of Things, 
Artificial Intelligence, and Software-defined Everything



2

Feature Articles

Vol. 16 No. 2 Feb. 2018

from the interposition of guest OSs. As a result, start-
ing and stopping containers is extremely fast.

Many kinds of container platform software can 
build container images by combining the software 
needed to execute the images. We introduce well-
known examples of such software here.

2.2   Docker-related efforts
Docker is a well-known container-management and 

execution platform. It uses a configuration file called 
Dockerfile that defines the content of the container to 
build a container image. The image can be distributed 
on a sharing platform called Docker Hub (Fig. 2). 
With this feature, users can compose images created 
by themselves or other users to easily build a service 

with the needed functions. Docker also comes stan-
dard with an orchestrator function called Swarm-
mode, which enables distributed execution of con-
tainers on multiple nodes based on the workload. In 
addition, container images built with Dockerfile are 
highly portable. They can also be executed on other 
orchestrators such as Kubernetes and Mesos.

The only Docker/Moby* maintainer from Japan (as 
of October 2017) was selected from the ranks of the 
NTT Software Innovation Center (NTT SIC) in 
November 2016. Maintainers are developers who 

Fig. 1.   Difference between virtual machines and containers.

Service

Guest OS

Hypervisor

Host OS

Physical hardware

Service

Guest OS

Service

Guest OS

Virtual server (virtual machine)

Service

Host OS

Physical hardware

Service Service

Virtual server (container)

(a) Hypervisor-based virtualization (b) Container-based virtualization

Fig. 2.   Structure of Docker.

Docker Hub (or private registry)

Microservice

Compose
and deploy

FROM  ubuntu
RUN apt install
COPY .conf /etc

Image definition
in Dockerfile

Microservice Microservice

* Docker/Moby: The transition of the Docker project to the Moby 
project began in April 2017. Product development by Docker, 
Inc. is based on the results of Moby’s open development. 



3 NTT Technical Review

Feature Articles

have the privilege of reviewing proposed changes to 
the source code such as bug patches and new func-
tional additions, and deciding on whether to adopt the 
proposals. In other OSS communities, a committer is 
a role equivalent to that of a maintainer.

Maintainers are selected from developers who have 
regularly contributed to the community by the agree-
ment of current maintainers. The maintainer from 
NTT SIC has been highly praised for his sustained 
activities of slightly less than a year, including ana-
lyzing and fixing issues related to Docker filesystem 
drivers and proposing container metadata manage-
ment functions. Since assuming the role of a main-
tainer, he has taken on the responsibility of reviewing 
proposals from other developers and deciding on 
their adoption, as well as contributing a new func-
tional proposal that shortens the container image 
generation time. This idea was included in the Build-
Kit project, which comprehensively rewrites the con-
tainer image builder functions, in July 2017.

2.3   Kubernetes and etcd-related efforts
Kubernetes is a container scheduler for managing 

clusters on a large scale of several thousand units. Its 
main role is to deploy containers on resource-appro-
priate machines in response to task creation requests. 
Its strengths are its isolation of resources for each task 
by using container technologies such as Docker, 
smooth distribution of applications, and flexible 
scheduling based on the priority of each task.

The frequency of generating events such as notifi-
cations of user requests and task completions depends 
on the purpose and size of the cluster. In an enormous 
cluster, events are generated at high frequency. Stor-
ing the states of tasks in high-reliability and high-
performance databases is therefore essential for sta-
bly operating a large-scale cluster.

A well known and leading OSS for storing task 
states is etcd. It is a distributed key value store that 
uses the Raft distributed consensus protocol. Its fea-
tures are high availability and strong consistency. 
Kubernetes uses etcd for saving internal management 
information. 

NTT SIC has been recognized for its sustained 
efforts to improve etcd, including improving product 
quality by fixing bugs related to etcd’s Raft compo-
nent and improving its authentication function at the 
design level. As a result, a maintainer of the etcd proj-
ect was selected from NTT SIC in June 2016. There 
are only seven maintainers of the etcd project world-
wide (as of October 2017).

In addition, Namazu, a testing tool for distributed 

systems developed by NTT SIC, is being used for 
etcd product improvement. At present, it is being 
incorporated into the official CI (continuous integra-
tion: automatic test environment) of the etcd project.

NTT SIC is also making efforts to expand the appli-
cability of Kubernetes by working on the develop-
ment of a scheduler that takes into account network 
topology and to provide support for remote direct 
memory access (RDMA), a low-latency and central 
processing unit (CPU)-efficient network protocol. 
These technologies are critical for deep learning 
frameworks, described below.

3.   Deep learning frameworks

Here, we describe the current situation regarding 
deep learning frameworks and also touch on expected 
future trends.  

3.1   Existing frameworks
The growing popularity of deep learning in recent 

years has led to the release of deep learning frame-
works as OSS (Table 1). Deep learning methodology 
learns from data the parameters of a defined model 
(network structure used for deep learning) in response 
to a task. With this trained model, data such as imag-
es and speech can be recognized with high accuracy. 
Through the learning process, a great number of 
derivatives within the model are calculated and used. 
However, implementing the computational process 
manually each time a task or model is modified 
becomes extremely cumbersome. A framework has 
functions for automatically carrying out the computa-
tional process necessary for learning. Users can use 
deep learning simply by defining the model to be 
used and the learning method.

Companies have led the development of deep learn-
ing frameworks. For example, outside Japan, Tensor-
Flow has been developed by Google, Microsoft Cog-
nitive Toolkit (CNTK) by Microsoft, and MXNet by 
Amazon. Facebook has been developing Caffe2 as a 
framework for commercial development and released 
PyTorch as a research-oriented framework. Tensor-
Flow’s main benefit is that it has the most users and 
the largest community of all the frameworks. CNTK’s 
strength is considered to be its fast performance and 
high scalability, and for MXNet, its flexibility in 
implementation. In Japan, Preferred Networks (PFN) 
has released Chainer, which provides support in Japa-
nese. Chainer also uses a flexible scheme in which 
the model structure is automatically determined as 
data are processed. This scheme has spread to other 



4

Feature Articles

Vol. 16 No. 2 Feb. 2018

frameworks.
Support for parallel distributed processing by 

frameworks is advancing. In Japan, Chainer is mak-
ing headway in providing similar support. PFN has 
released an additional package for Chainer called 
ChainerMN, which supports distributed learning. The 
company claims that the product is six times as fast as 
TensorFlow (as of February 2017).

None of these frameworks has emerged as the deci-
sive winner in terms of the work environment or 
processing capabilities. NTT SIC is therefore con-
tinuing to test each framework in accordance with a 
variety of use purposes.

3.2    Technological trends and challenges going 
forward

(1)  Parallel distributed processing using high-per-
formance computing resources

To improve the accuracy of deep learning, it is said 
that in general, the model must have deep layers. 
Consequently, however, the number of parameters to 
learn increases and the computational complexity 
explodes. The problem arises in which computations 
require several days to several weeks. The use of 
high-performance computing resources, which boast 
superior computational capabilities, and parallel dis-
tributed processing, which executes multiple compu-
tations in parallel, is being investigated in order to 
solve this problem. Frameworks are being extended 
to support this trend.

The use of GPUs as high-performance computing 
resources is becoming widespread. GPUs are espe-
cially strong when it comes to matrix operations, 
which make up almost all deep learning computa-

tions. At present, products from NVIDIA, which have 
become the de-facto standard, feature computational 
performance that is several times to several tens of 
times greater than that of CPUs. Several frameworks 
use cuDNN, a library provided by NVIDIA, to 
describe computation for their learning component. 
Thus, we see an example of the use of high-perfor-
mance GPUs.

Parallel distributed processing techniques mainly 
use a method called data parallelism, which makes 
use of multiple GPUs. Data parallelism is a method in 
which the same model is copied to multiple GPUs, 
and different parameter learning computations are 
executed on the learning data in parallel. The param-
eters are then updated based on communications 
from each GPU. Vast improvements in speed can be 
expected by parallelizing parameter learning, for 
which until now learning data had been input into one 
GPU sequentially. As a result, active efforts are 
underway to support each framework. Work is also 
being carried out to provide multi-GPU support in 
one machine and multi-node support using GPUs in 
multiple machines.

We can thus expect to further improve speed by 
increasing the number of machines and GPUs. How-
ever, it is known that as parallelism increases, com-
munication to update parameters becomes the perfor-
mance bottleneck. Research on how to skillfully 
arrange parameter data and apply high-performance 
communication techniques has begun for each frame-
work. The discussions and implementations are 
expected to be energetic from here on.

Going forward, NTT SIC plans to study which 
architectures are the most optimal for actual problems.

Table 1.   List of deep learning frameworks.

Framework Platform Interface Features Main developer 

TensorFlow Linux, macOS,
Windows, Android, iOS 

Python, Java, C++, Go, Julia, 
C#, R, Haskell 

Largest community;
Can visualize with TensorBoard Google 

MXNet Linux, macOS,
Windows, Android, iOS 

Python, R, Julia, Scala, Go, 
(Matlab, Javascript) 

Can be flexibly implemented to suit the task;
Numerous platforms

Amazon, 
Baidu, 
Carnegie Mellon
Univ. 

CNTK Linux, Windows Python, C++ Fast (especially RNN);
High scalability Microsoft 

Chainer Linux Python Effective implementation schemes for natural 
language processing PFN 

PyTorch Linux, macOS Python Effective for natural language processing 
derived from Torch and Chainer 

Facebook,
Twitter, 
Salesforce 

Caffe2 Linux, macOS,
Windows, Android, iOS C++, Python Numerous platforms;

High-speed, memory-efficient, high scalability Facebook 



5 NTT Technical Review

Feature Articles

(2)  Communication processing technologies to sup-
port parallel distributed processing

The use of high-speed interconnects such as 
InfiniBand, widely used in the field of high perfor-
mance computing (HPC), is considered effective as a 
high-speed communication approach. RDMA is used 
instead of general Transmission Control Protocol/
Internet Protocol (TCP/IP) to achieve low-latency 
communications when using high-speed intercon-
nects to their maximal limits. RDMA is capable of 
reading/writing the memory of remote machines 
without CPUs as the intermediary. General commu-
nication programs are described using socket applica-
tion programming interfaces (APIs). However, 
RDMA communication programs use low-level 
descriptive APIs called verbs and Message Passing 
Interface (MPI), a parallel computing interface wide-
ly used for HPC.

RDMA support for TensorFlow is steadily moving 
forward. RDMA verb communication was imple-
mented in April 2017 [1], and GPU Direct RDMA 
was implemented in August 2017 [2]. Additionally, 
distributed processing using MPI for inter-node com-
munication is being developed for ChainerMN [3]. 
Partial implementation and discussions in communi-
ties have also begun for MXNet and CNTK [4]. In the 
near future, RDMA-related activities will become 
even more critical.

Because RDMA communication procedures are 
more complex in actual use than general TCP/IP, 
NTT SIC is presently studying ways to simplify 
implementation by abstracting APIs in order to popu-
larize RDMA communication.

4.   Future development

In this article, we introduced new OSS efforts being 
carried out by NTT SIC in the areas of container-
based virtualization technologies and deep learning 
frameworks. Because virtualization is a required 
technology for system design and architecture, the 
application of lightweight virtualization container 
technologies will continue to expand going forward. 
Also, deep learning frameworks will advance in their 
ability to handle parallel distributed processing.

The NTT laboratories are continuing to advance 
research and development related to these technolo-
gies. At the same time, the labs are focusing on using 
their own approaches. For example, the NTT labora-
tories are building parallel distributed deep learning 
frameworks on container clusters and evaluating the 
frameworks during actual use. These efforts not only 
contribute to AI research, but are also expected to be 
applied to a wide range of other problems.

References

[1] ibverbs-based RDMA path, https://github.com/tensorflow/tensorflow/
pull/8943

[2] GPU Direct RDMA Out-of-Band Tensor Transport, https://github.
com/tensorflow/tensorflow/pull/11392

[3] ChainerMN distributed deep learning frameworks (in Japanese), 
https://research.preferred.jp/2017/05/chainermn-beta-release/

[4] CNTK v.2.0 RC 2 Release Notes, https://github.com/Microsoft/
CNTK/wiki/CNTK_2_0_RC_2_Release_Notes

Trademark notes 
All brand names, product names, and company names that appear in this 
article are trademarks or registered trademarks of their respective owners.

https://github.com/tensorflow/tensorflow/pull/8943
https://github.com/tensorflow/tensorflow/pull/8943
https://github.com/tensorflow/tensorflow/pull/11392
https://github.com/tensorflow/tensorflow/pull/11392
https://research.preferred.jp/2017/05/chainermn-beta-release/
https://github.com/Microsoft/CNTK/wiki/CNTK_2_0_RC_2_Release_Notes
https://github.com/Microsoft/CNTK/wiki/CNTK_2_0_RC_2_Release_Notes


6

Feature Articles

Vol. 16 No. 2 Feb. 2018

Jun-ya Kato
Senior Research Engineer, Distributed Com-

puting Technology Project, NTT Software Inno-
vation Center.

He joined NTT Information Sharing Platform 
Laboratories in 2002, where he studied next-
generation Internet protocol IPv6. He joined the 
architecture design project for IPv6 Internet ser-
vice provider (ISP) support on NGN (Next Gen-
eration Network) in 2008. He also technically 
supported NTT operating companies participat-
ing in World IPv6 Day and World IPv6 Launch, 
which were global IPv6 deployment events in 
2011 and 2012, respectively. He then moved to 
the Technology Development Department, NTT 
Communications, where he developed network 
security services such as DDoS (distributed 
denial of service) protection in the ISP backbone. 
His current research is focused on software-
defined networking and distributed computing 
platforms.

Hitoshi Mitake
Researcher, Distributed Computing Technolo-

gy Project, NTT Software Innovation Center.
He received a B.E. and M.E. from Waseda 

University, Tokyo, in 2010 and 2012. He joined 
NTT in 2012 and has been working on distribut-
ed storage systems and cluster management sys-
tems.

Hideki Yamada
Research Engineer, Distributed Computing 

Technology Project, NTT Software Innovation 
Center.

He received a B.E. and M.E. from Tokyo Insti-
tute of Technology in 2005 and 2007. He joined 
NTT Information Sharing Platform Laboratories 
in 2007. His recent research area is distributed 
storage.

Akihiro Suda
Researcher, Distributed Computing Technolo-

gy Project, NTT Software Innovation Center.
He received a B.E. and a Master of Informatics 

in computer science from Kyoto University in 
2012 and 2014. He joined NTT in 2014 and has 
been a maintainer of several kinds of container-
related OSS such as Moby (formerly Docker), 
Moby BuildKit, and CNCF containerd. 

Kengo Okitsu
Researcher, Distributed Computing Technolo-

gy Project, NTT Software Innovation Center.
He received a B.S. and M.S. in computer sci-

ence from the Tokyo Institute of Technology in 
2008 and 2010. He joined NTT in 2010 and has 
been studying cloud resource management and 
scheduling.

Sekitoshi Kanai
Researcher, Distributed Computing Technolo-

gy Project, NTT Software Innovation Center.
He received a B.E. and M.E. in physics and 

physico-informatics engineering from Keio Uni-
versity in 2013 and 2015. He joined NTT in 2015 
and has been studying deep learning algorithms.


