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1.   Second law of thermodynamics and 
Maxwell’s demon

The second law of thermodynamics states that 
every physical system eventually becomes random. 
This law prohibits us from creating ordered motion of 
electrons, or electrical current, from thermal noise 
unless we modify the electrons externally. Maxwell’s 
demon is a thought experiment created by Scottish 
mathematician James Clerk Maxwell to contradict 
the second law of thermodynamics; it is an ideal 
entity that can perform a feedback operation by 
observing objects at the level of thermal noise and 
can create ordered motion of electrons using energy 
from thermal noise without our having to modify the 
electrons. 

Maxwell’s demon has been vigorously discussed 
among physicists for more than 150 years because it 
appears to violate the second law. The discussions 
have clarified that Maxwell’s demon uses informa-
tion about the thermal motion of electrons, which 
requires energy. This means that we need a certain 
amount of energy to obtain the information, and we 
can create the same amount of energy at maximum 
from it. 

This idea leads to the concept of information ther-
modynamics, in which the role of information is on 
the same footing as energy. Information thermody-
namics reveals the lower bounds of the thermody-

namic cost of information processing [1] and pro-
vides us knowledge about small heat engines such as 
molecular motors whose motions are driven by ther-
mal fluctuations. Maxwell’s demon is the epitome of 
information thermodynamics, which is considered to 
be related to energy-efficient biological systems.

In this study, we succeeded in generating electrical 
current and power with Maxwell’s demon in one of 
the most natural ways: observing electron thermal 
motion, sorting electrons with the obtained informa-
tion, and outputting the sorted electrons that had large 
energy.

2.   Silicon nanotransistors and operation of 
Maxwell’s demon

In the experiment, we used a silicon nanodevice on 
a silicon-on-insulator wafer. In our device, a single-
electron box electrostatically defined by two transis-
tors provides doors through which electrons can enter 
and exit the box, and a capacitively coupled detector 
with single-electron sensitivity detects thermal fluc-
tuation in the box at the single-electron level (Fig. 1) 
[2]. By switching the transistors on and off, we can 
open and close the entrance to the box and the exit 
from it individually. The number of electrons in the 
box was observed in real time at a frequency of about 
14 Hz by measuring the current flowing through the 
detector. All the measurements were done at room 
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temperature. 
We performed feedback control based on the num-

ber of electrons in the box [3] as follows (Fig. 2). 
First, we open the entrance and observe random elec-
tron motion between the entrance and the box. After 
electrons have entered the box, we close the entrance. 
Then, we open the exit and observe random electron 
motion between the exit and the box. Finally, after the 
electrons have exited the box, the exit is closed. By 
repeating these procedures, we can move electrons 
from the entrance to the exit. We carefully calibrated 
the experimental setup to achieve the operation of 
Maxwell’s demon without doing any external work 
on the electrons [4]. 

3.   Rectification of thermal noise with 
Maxwell’s demon

Carrying out the above procedures enables sorted 
electrons to flow as electrical current. They can even 
climb up the potential energy across the entrance and 
exit (Fig. 3); this climbing is the power generation. 
When the source-drain bias voltage VSD is ~30 mV, the 
generated power shows the maximum value of 0.5 zW 
(10−21 W). The quantitatively estimated information-
to-energy conversion efficiency is 18%, which is 
reasonably high and consistent with our theoretical 
simulation. This consistency indicates that silicon 
nanodevices are an ideal platform for studying Max-
well’s demon and information thermodynamics. The 
simulation also demonstrated that the power output 
increases as the detector becomes faster and the box 
becomes smaller. Therefore, further advances in  

Fig. 1.    Device structure. A schematic illustration of the structure of our device (left), and a corresponding schematic 
illustration of Maxwell’s demon (right). The nanometer-scale silicon transistors serve as doors that control the motion 
of electrons. Electrons move in a direction determined by the voltage as an average flow. However, at the single-
electron level, the motion is random because of thermal noise. The detector can observe the random motion.
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Fig. 2.    Operation of Maxwell’s demon. Maxwell’s demon opens and closes the entrance and exit doors based on the number 
of electrons in the electron box, which thermally fluctuates.
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transistor technology will lead to an increase in the 
demon’s power output.

4.   Future work

The results in this work are closely related to the 
lower bound of energy consumption in electrical 
devices and the efficiency of small heat engines. To 
achieve high energy-to-power conversion efficiency, 
biomolecules, for example, molecular motors, are 
thought to use information about themselves to per-
form their operation at proper timings. Such an effi-
cient process in biomolecules can be modeled and 
analyzed in the framework of Maxwell’s demon. We 
will attempt in the future to deepen our understanding 

of the mechanism responsible for the high efficiency 
in biological systems and thereby make an electrical 
device that mimics their high efficiency. 
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Fig. 3.    Power generation with Maxwell’s demon. On the left is a schematic illustration of power generation with Maxwell’s 
demon. Maxwell’s demon sorts electrons with large energy and outputs them. The energy can be utilized as electrical 
power as depicted. The right graph shows the electrical current (in the direction corresponding to electron motion 
from the entrance to the exit) as a function of the voltage. The voltage represents the height of the exit relative to that 
of the entrance (when the exit is higher than the entrance, the voltage is positive). The dotted blue line is the expected 
electrical current without Maxwell’s demon. In this situation, electrons flow from the entrance to the exit only when 
the voltage is negative. In contrast, with Maxwell’s demon, electrons are expected to flow from the entrance to the 
exit even when the voltage is positive, which is shown by the red line. The experimentally obtained electrical currents, 
plotted as black circles, are similar to the expected value with Maxwell’s demon. When the voltage is positive, 
electrons climb up the voltage, and Maxwell’s demon generates electrical power as illustrated on the right.
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