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1.   Fusion of heteromaterials with nanophotonics

The integration of compound semiconductors on 
silicon is very important for optoelectronic devices 
for optical interconnection, optical computing, and 
on-chip devices. Wafer bonding is generally used to 
bond compound semiconductors and silicon, which 
are dissimilar materials. Although that method 
enables the integration of heteromaterials such as 
compound semiconductors on silicon, it involves 
problems such as the difficulty of bonding and the 
difficulty of obtaining the utmost optical function of 
the optical elements, which themselves are com-
pounds, due to overheating. 

In our work, we have adopted a configuration in 
which high-performance optical elements made of 
optically low-loss silicon are prepared and compound 
semiconductor nanowires are placed as gain parts in 
the necessary locations. This fabrication process does 
not involve heating, so damage due to overheating 
does not occur. Moreover, the optical loss is low 
because the device is based on silicon. Another 
advantage is that the environmental impact is very 
low because there is minimal use of the compound 
semiconductor. Accordingly, this device can be con-
sidered an ideal heteromaterial hybrid optical device.

The device described here is a new nanolaser with 
a hybrid structure comprising silicon photonic crystal 
and a compound semiconductor. The nanowire is a 
one-dimensional structure that can be fabricated on a 
substrate in large numbers at one time. The nanowire 
can serve various purposes, including a quantum 
well, quantum dot, and p-i-n (p-type, intrinsic, n-type 
semiconductors) junction, which can be controlled by 
switching the gas that is supplied during growth. 
However, the nanowires themselves are too small to 
efficiently provide strong light confinement. Silicon 
photonic crystal, on the other hand, can provide very 
efficient light confinement without optical loss, but 
silicon is an indirect transition semiconductor and 
cannot itself emit light. 

In our work, we fabricated a nanolaser by introduc-
ing an indium arsenic phosphide and indium phos-
phide (InAsP/InP) nanowire quantum well into a sili-
con photonic crystal to form a micro-cavity (Fig. 1). 
This combination can be considered a landmark 
structure that compensates the weak light confine-
ment of the nanowire and the absence of light emis-
sion by the photonic crystal with the light emission of 
the nanowire and optical confinement of the photonic 
crystal. This type of structure was used to demon-
strate the world’s first nanowire laser that operates 
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continuously in the communication wavelength band 
[1].

2.   Fabrication of hybrid nanowire devices

This device is fabricated by transferring nanowires 
onto a silicon substrate and then moving them onto 
the photonic crystal with the probe of an atomic force 
microscope (AFM)*1 [2]. This method makes it pos-
sible to place any nanomaterial freely on a photonic 
crystal or other optical circuit. 

The nanowires used here were fabricated by the 
VLS (vapor-liquid-solid) method using metal-organ-
ic vapor phase deposition [3]. The InP nanowires are 
grown from gold particles 40 nm in diameter that are 
dispersed on an InP (111) B substrate. One hundred 
InAsP layers are formed internally by supplying arse-
nic for a short time during the nanowire growth.

The light emission characteristic of the nanowire 
quantum well has a spectrum peak in the 1.3-µm 
band, and the polarization direction of the emitted 
light is controlled to be perpendicular to the nanowires. 
The nanowires are 2.4-µm long and have an average 
diameter of 114 nm (82 nm minimum and 144 maxi-
mum). The silicon photonic crystal has a diameter of 
200 nm, a lattice constant of 370 nm, a trench width 
of 150 nm, and a depth of 115 nm. The nanowires are 
placed in grooves in the prefabricated photonic crys-
tal. The photonic band at the location where the 
nanowires are placed is shifted towards shorter wave-
lengths, and the optical characteristics are changed 
only at those locations. Because light of particular 
wavelengths is confined in those locations, cavities 

are formed. Such photonic crystal cavities are called 
mode gap cavities (Fig. 2(a)).

The polarization of the cavity mode is consistent 
with the polarization of the nanowire itself, so light 
can be extracted efficiently. From simulations of the 
light intensity when nanowires are placed in the pho-
tonic crystal (Fig. 2(b) and (c)), we can see clearly 
that oscillators are formed, and light is strongly con-
fined at the nanowire locations. Because cavities are 
formed in the optical waveguide by simple placement 
of nanowires, this is a very convenient structure.

3.   Nanowire laser

Next, we investigated the oscillation of the laser 
produced by the nanowires. A conceptual diagram of 
the measurement and the measured spectra before 
and after oscillation produced by placement of the 
nanowires on a photonic crystal are presented in 
Fig. 3(a) and (b). Light emission was measured using 
the microscopic photoluminescence method. The 
device was illuminated with light to excite the 
nanowires, and the light emitted by the nanowires 
was measured with a detector. The specimen was 
cooled to a temperature of 4K. The emission spec-
trum is steep, as seen in Fig. 3(b). That is the spec-
trum of the nano-oscillator induced in the photonic 
crystal by the nanowire. Furthermore, when the  
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Fig. 1.   Conceptual diagram of hybrid structure of nanolaser.

*1 AFM: An instrument that can visualize the surface of a specimen 
by using a sharp probe attached to the tip of a cantilever to scan 
the surface and measure the inter-atomic force acting between the 
probe and the specimen surface. In the process reported here, the 
scanning function of the probe is used to position nanowires.
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Fig. 2.   Nanowire induced photonic crystal cavity.
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Fig. 3.   Measurement of nanowire laser.
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excitation power is high, the laser oscillates with 
sharp increases in emission intensity. We investigated 
this effect in detail by measuring the nanowire emis-
sion while varying the excitation power (Fig. 3(c)) 
(light-in, light-out (L-L) measurement). The depen-
dence of the emission and the spectral linewidth of 
the cavity on the excitation strength is shown in the 
figure. Generally, the emission sharply increases, and 
the cavity spectrum width becomes narrow when the 
laser oscillates, and the result presented here exhibits 
that behavior. The emission becomes strong at the 
excitation power of 0.15 mW (the oscillation thresh-
old of the laser), confirming laser oscillation with 
certainty.

Oscillation of the laser can also be confirmed by 
investigating photon statistics. Correlation measure-
ments can be used to investigate the time intervals 
between photons. The light prior to laser oscillation is 
called spontaneous emission light and is character-
ized by a large variance in intensity with short time 
intervals between photons (referred to as bunching 
because the photons are close together). The light 
after laser oscillation, on the other hand, is called 
coherent light, because the intensity is stable and 
there is a uniform distribution of the intervals between 
photons. The measurements require detection of a 
photon-level signal, so we used a highly sensitive 

superconducting single-photon detector*2 to deter-
mine the correlation function (g2(t)). Prior to oscilla-
tion, the correlation for this function is at t = 0, and 
bunching is observed (g2(0) > 1). However, that 
bunching signal is eliminated once the laser oscilla-
tion begins. The effect of change in the excitation 
power on g2(t) is that the bunching signal is elimi-
nated and the laser transition occurs (Fig. 4). Laser 
oscillation is confirmed to continue after that point.

Next, we conducted communication experiments 
with bit signals produced by this laser. The concep-
tual diagram for the experiment and the input signal, 
output signal, and eye diagram are presented in 
Fig. 5. The input signal was a 10-Gbit/s pseudoran-
dom pattern produced by a pulse pattern generator. 
The input light was modulated by an electro-optic 
modulator, and the signal output from the nanolaser 
was integrated by the superconducting single-photon 
detector for measurement. Normally, a sampling oscil-
loscope and photodetector are used for measurement, 

Fig. 4.   Photon correlation measurement of nanowire laser.
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*2 Superconducting single-photon detector: A system that detects 
photons by using a superconductor with a current bias that is just 
below the critical current as an optical detector. A photon is de-
tected when the heat of a single photon breaks the superconduct-
ing state, increasing the resistance and producing a voltage pulse 
that is measured. High-speed photons can thus be measured at 
very high temperatures.



Feature Articles

NTT Technical Review 24Vol. 16 No. 7 July 2018

but the extremely weak light emitted by the nanolaser 
is measured in free space, so a highly sensitive detec-
tor is used. The light used for excitation has sufficient 
power to produce laser oscillation. We can see that the 
obtained waveform is the same as the waveform of 
the input signal. We analyzed the signal to obtain an 
eye diagram. The open center of the eye pattern indi-
cates that correct communication of the bit signal is 
possible.

4.   Future development

We achieved continuous-wave laser oscillation at 
communication wavelengths by introducing com-
pound semiconductor nanowires into silicon photonic 
crystals. We also confirmed that laser oscillation can 
be evaluated with photon statistics as well as with 
L-L characteristics. We further confirmed that the 
laser can be modulated directly at about 10 Gbit/s by 
modulating the excitation light with a pseudorandom 
signal. This demonstration of a communication-band 
nanowire laser and confirmation of modulated opera-
tion of a single nanowire laser are world-first achieve-
ments. 

While the demonstration described here was per-

formed at low temperature, we are aiming for room-
temperature operation in the future. The current 
nanowires and optical confinement are insufficient. 
Improvement will require thicker nanowires and con-
trol of non-emissive re-coupling at the nanowire sur-
face. The structure of the photonic crystal should also 
be considered. We also plan to fabricate a current 
injection structure by using nanowires that have a 
p-i-n structure. In the future, we plan to develop new 
on-chip devices through on-chip integration of cur-
rent-injected nanowire lasers, nanowire optical detec-
tors, and nanowire optical modulators.
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Fig. 5.   Modulation measurement of nanowire laser.
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