
NTT Technical Review 12Vol. 16 No. 8 Aug. 2018

1.   Far-field speech recognition

The use of speech recognition systems is increasing 
rapidly, and in line with this trend, communication 
agents such as smart speakers and voice dialog robots 
are being rapidly adopted, as are voice search ser-
vices on smartphones. With search tasks using smart-
phones, utterances are often made in the immediate 
vicinity of the microphone, but when talking to robots 
or smart speakers, we must assume utterances will be 
made one to three meters away from the microphone. 
Furthermore, the speakers will exhibit individual dif-
ferences in voice volume, and when a speaker speaks 
softly from some distance in a noisy environment, it 
is very difficult for current systems to correctly rec-
ognize the speech.

We researched various approaches to counter the 
noise environment of the home and to achieve robust 
speech recognition under both close and distant con-
ditions regardless of noise or voice volume. Our aim 
was to improve system performance by enhancing 
training data and evaluation data by generating pseu-
do data and improving playback recording (or, pseu-
do recording), adjusting training parameters, and 

improving speech section detection (Fig. 1). Tests 
conducted using these approaches indicated that an 
error reduction rate of 43% or more was achieved in 
both close and distant conditions. These approaches 
are explained in the following sections.

2.   Data augmentation by generation of 
pseudo data and speech samples

Having sufficient training data is necessary to 
improve system performance, but it is not always 
easy or practical to obtain the right kind of data. Data 
augmentation is a common approach to obtain a suf-
ficient amount of data.

2.1   Augmentation of training data
The characteristics of the sound captured by the 

microphone will vary greatly with the speaker’s prox-
imity to the microphone. With close utterances, since 
the direct sound of the speaker dominates any echoes 
or noise, recognition can be performed with high 
accuracy regardless of the ambient noise environ-
ment. In contrast, with distant utterances, not only is 
the target utterance of the speaker affected by factors 
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such as the reverberation characteristics of the room 
and the attenuation due to distance, but it is also more 
likely that one or more noise sources that are closer to 
the microphone than the speaker will drown out the 
utterances, making recognition very difficult. 

The mainstream approach at present is to build an 
acoustic model using deep neural network (DNN) 
technology, and it is possible to construct a robust 
acoustic model if adequate amounts of training data 
captured in various environments are available. 
Therefore, to construct acoustic models that are 
robust against various noises and speakers, it is 
important to cover as many diverse environments as 
possible. Normally, data are reinforced by transcrib-
ing speech recorded in various environments, but 
speech transcription takes too long, so gathering suf-
ficient training data is problematic. One promising 
solution is to add various reverberation effects and 
noise to existing clean speech data, which yields a 
sufficient variety of pseudo data. This method of gen-
erating pseudo data is important not only for speech 
recognition but also for DNN training in all fields.

However, increasing the pseudo data will not neces-
sarily yield higher accuracy. For example, with a 
communication agent that is to be used in the home, 

we can predict that situations where speaking occurs 
at distances exceeding 3 m are unlikely to occur. 
Also, because homes include furniture and sound-
absorbing materials such as carpets and curtains, 
reverberation in the room will not be very strong. The 
noise environment can be expected to include the 
noise of television (TV), cooking sounds from the 
kitchen, and air conditioning. However, modern air 
conditioners are extremely quiet, and are therefore 
unlikely to drown out the speech. Thus, we can opti-
mize speech recognition in the target environment by 
properly reacting to the reverberation strength, type 
of noise, and volume of noise so as not to generate 
unrealistic pseudo data.

In addition to generating pseudo data, we also make 
pseudo recordings by creating corrupted speech as it 
would be captured by the microphone. This method is 
very effective when the impulse response cannot be 
captured due to specifications of the microphone, or 
when it is necessary to create a more complex rever-
beration/noise environment. The playback recording 
configuration is shown in Fig. 2. The height, position, 
and angle of the speaker used for pseudo recording is 
set considering the practical environment. For exam-
ple, if the user is assumed to speak while sitting on a 

Fig. 1.   Overview of our speech recognition enhancement approach.
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sofa, the speaker’s height should match the height of 
the user’s mouth. In addition, the speaker for noise 
playback is set to replicate the position of the actual 
noise source. The microphone used to capture the 
pseudo recording should be set at multiple positions 
at the same time, as recording in parallel enables 
more efficient data enhancement. To capture different 
characteristics, the microphone position can be set at 
not only different distances to the speaker, but also at 
different angles with respect to the speaker, position 
in the room, and other details. Pseudo recording 
yields training data of higher quality than simulated 
data because the results are captured after the sounds 
actually traverse space.

In this way, in addition to the data provided by nor-
mal transcription, the training data are reinforced by 
generating the pseudo data and pseudo recording, and 
it is possible to increase the training sound data, 
which originally amounted to only about 1000 hours, 
to more than 15,000 hours. In addition, at the first 
stage of speech recognition, utterance sections are 
accurately extracted by speech segment detection, 
which greatly improves recognition efficiency. The 
models used at this time were reinforced by similar 
data enhancement.

2.2   Creation of evaluation data
After the model is created from training data, evalu-

ation data are needed to evaluate the model’s perfor-
mance. The ideal evaluation data consist of real data 
captured in the user’s environment, but obtaining 
such ideal data is impractical, and in most cases 
evaluation data obtained in a nearly equal environ-

ment will be used. Accordingly, pseudo recording is 
an effective solution to the problem of creating evalu-
ation data.

For this research, we prepared and evaluated a total 
of 36 patterns created by pseudo recordings using the 
speech of 20 subjects and setting different conditions 
of reverberation, distance, voice volume, and noise. 
The resulting data make it possible to assess system 
performance in environments for which evaluation 
data are unavailable. The resulting data revealed the 
strong and weak points of the trained model, which 
will make training the next model much more effi-
cient.

3.   Determining training parameters

The accuracy of the DNN acoustic model is greatly 
affected by the training parameters used, and these 
parameters are very difficult to set to maximize sys-
tem performance. If the training set is very large 
scale, say more than 15,000 hours, parameters that 
are conventionally appropriate will not always work, 
and it is necessary to review what constitutes the opti-
mal parameter setting.

There are two goals with parameter adjustment: 
speed enhancement and higher accuracy. The former 
can be achieved by increasing the number of parallel 
GPUs (graphics processing units) used to implement 
training and increasing the number of samples used to 
calculate each process in training (batch size). How-
ever, if the batch size is increased too much, any 
sample that is used will be close to some entries when 
the average is determined for each process. This 

Fig. 2.   Pseudo recording setup.
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means that convergence may occur even if training is 
insufficient.

As for the latter, to incorporate data as diverse as 
possible into training, it is necessary to increase the 
amount of data processed in each epoch (one training 
iteration) or make it easier to select specific condition 
data from the corpus used for training, which is 
another of our advances.

By adjusting the training parameters, we were able 
to develop a more accurate acoustic model while 
keeping the training time the same as it was when 

only 1000 hours of speech were used for training.

4.   Recognition accuracy under different noise 
and distance values

In this section, we describe how well our data 
enhancement and model training techniques increase 
system performance. The performance results of the 
base model and the model using the proposed tech-
niques are shown in the graph in Fig. 3. The training 
parameters were optimized for each condition. As can 

Fig. 3.   Effectiveness of data augmentation.
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be seen in this graph, pseudo data generation greatly 
improves the recognition rate in clean and kitchen 
environments with distances to the microphone of  
1 m and 3 m, which confirms the value of data rein-
forcement. In contrast, in the living room environ-
ment, no significant improvement in accuracy was 
seen. This is most likely because the TV in the living 
room environment puts out voices, and it is very dif-
ficult to judge whether such extraneous speech is 
noise or not.

Our technique of pseudo recording is very effective 
in coping with this living room noise, as it enables 
training to include more practical environmental 
information and strengthens the detection of speech 
segments. The result is a strong improvement in rec-
ognition rate in the living room environment while 
maintaining the excellent recognition performance in 
the clean and kitchen environments. The techniques 
enable us to build an acoustic model that is signifi-
cantly better than all conventional alternatives.

5.   Future work

Our research has yielded acoustic models that offer 
high speech recognition accuracy regardless of the 

presence or absence of noise in the close and distant 
speaker conditions. However, in environments where 
the speaker’s voice is mixed with the speech of oth-
ers, erroneous speech recognition results are gener-
ated, so that the system reacts incorrectly or recog-
nizes the user’s utterance wrongly. We believe that 
this problem can be tackled by using direction-based 
sound collection technology such as the intelligent 
microphone [1], which will enable robust recognition 
of the target speaker’s voice even in very noisy envi-
ronments.

This study focused on quite short utterances such as 
those used for conducting search tasks. Many tasks 
remain if we are to reliably recognize natural speech 
as encountered at conferences and call centers. We 
will continue working to enhance the performance of 
our techniques to cover these natural utterances.
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