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1.   Wearable devices supporting everyday life

Wearable devices now make it easy to continuously 
measure biosignals of subjects and monitor their con-
dition in daily life. To properly support people’s daily 
activities, it is important to inform them of their 
physical and mental states, which they may not be 
aware of, based on data measured from wearable 
devices. When people perform tasks that do not 
involve much physical exertion such as office work or 
driving, it is difficult to accurately gauge the actual 
workload from only the amount of physical activity. 
It is therefore important to encourage people to take 
breaks or other kinds of relaxation to improve their 
work efficiency or health management based on the 
actual workload. Attention also needs to be paid to 
the mental state of workers, which can also be affect-
ed by their workload. 

2.   Estimation of physical and mental states by 
heart rate variability analysis

Heart rate variability (HRV) analysis is a well-
known method to assess a person’s physical and 
mental states that involves analyzing the variations 

between heartbeats. It can shed light on the static bal-
ance between sympathetic nerves and parasympa-
thetic nerves that form the autonomic nervous system 
[1, 2]. In the electrocardiogram (ECG) waveform 
shown in Fig. 1, the QRS complex corresponds to the 
depolarization of the ventricles of the heart; the time 
interval between two adjacent R waves is called the 
R-R interval (RRI). RRI time series data are known to 
have fluctuations called HRV, which could possibly 
reflect autonomic nervous system activity under spe-
cific conditions [1]. 

We focused on these physiological characteristics 
in developing some estimation algorithms targeting 
sleep stage [3, 4] or mental fatigue [5, 6]. These algo-
rithms estimate the target state through the HRV 
analysis process shown in Fig. 2. We can use shirt-
type wearable ECG devices such as a “hitoe” shirt*1 
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*1	 “hitoe” shirt: A shirt containing embedded measurement elec-
trodes made of “hitoe,” a new functional material [7] developed 
in collaboration with textile manufacturer Toray Industries, Inc. 
By including a transmitter with a built-in analog/digital converter 
and wireless data transfer unit in the “hitoe” shirt, we can mea-
sure ECG waveforms and calculate heartbeats or RRIs from the 
measured ECG waveforms. Note that measurement electrodes in 
the “hitoe” shirt should be in direct contact with the wearer’s 
skin.
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to measure the target ECGs before carrying out this 
process. 

NTT Group companies are involved in developing 
and implementing practical products and services in 
collaboration with outside corporate partners. The 
“hitoe” shirt, developed in collaboration with Toray 
Industries, Inc., is used in one such practical applica-
tion of a driver health management service [6]. This 
service is based on the fatigue state*2 estimation 
model that focuses on the relationship between vari-
ous HRV features obtained through HRV analysis 
and the wearer’s fatigue state. A transmitter attached 
to a “hitoe” shirt worn by a driver measures ECG, 
calculates RRIs, and then sends those RRI time series 
data to the cloud in order to estimate the driver’s 
fatigue state by using a cloud-implemented fatigue 
state estimation model with parameters calibrated in 

advance. The model is thus able to continually moni-
tor the fatigue level of the driver simply by having the 
driver wear the “hitoe” shirt.

Note that the state estimation algorithms using 
HRV analysis described above generally need to 
apply an estimation model based on the relationship 
between HRV features and the target state. This 
means that those estimation algorithms basically 
require long-term continuous RRI time series data 
even when using shirt-type wearable ECG devices 
such as a “hitoe” shirt. However, ECG measurement 
electrodes embedded with shirt-type wearable ECG 
devices stretch along with the shirt itself when the 

Fig. 1.   Schematic diagram of ECG waveform and RRI.
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Fig. 2.   HRV analysis process.
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*2	 Fatigue state: In this article, fatigue state means the fatigue of the 
central nervous system including the brain and spine, measured 
by the flicker test.
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user moves about, and this may cause measurement 
faults*3 as illustrated in Fig. 3. This is most often 
observed when the user twists around. Since mea-
surement faults make it impossible to obtain accurate 
RRIs, conventional methods have excluded these data 
from HRV analysis to avoid obtaining inaccurate 
HRV features. In real life, however, people contort 
their bodies throughout the day; we toss and turn in 
bed, twist our torso as we turn the steering wheel, and 
stretch our body during breaks. 

To allow for these situations without discarding a 
significant amount of measured data when conduct-
ing HRV analysis in daily life, a new data analysis 
scheme is required that incorporates advanced outlier 
processing. We explain in the following sections two 
new methods that enable more accurate HRV analysis 
with the goal of enhancing self-state awareness of 
users through the use of shirt-type wearable ECG 
devices like the “hitoe” shirt: ECG waveform analy-
sis based on non-orthogonal wavelet expansion [8] 
and RRI outlier processing [9–11].

3.   ECG waveform analysis based on 
non-orthogonal wavelet expansion

The primary goal of our ECG waveform analysis 
based on non-orthogonal wavelet expansion (hereaf-
ter, NCWE) [8] is to improve the accuracy of R wave 
detection in HRV analysis, which is the very first step 
shown in Fig. 2, even when analyzing ECG measured 
by shirt-type wearable ECG devices. Thus far, ECGs 
have generally been measured in the presence of phy-
sicians or medical technicians, who are responsible 
for discarding certain portions of ECGs containing 
measurement faults, so that even simple R wave 
detection algorithms can detect R waves. However, 
there are in general no medical personnel present to 
discard faulty results when ECGs are measured using 
shirt-type wearable ECG devices. Consequently, 

measurement faults inevitably make their way into 
the target ECGs. Moreover, measurement electrodes 
embedded with shirt-type wearable ECG devices 
may be attached at different points in accordance 
with the physique or body movements of users, and 
this may induce measurement faults or apparently 
different ECG waveforms. 

Many of the conventional simple R wave detection 
algorithms are often unable to follow these differ-
ences in ECG waveforms or to detect R waves buried 
in measurement faults accurately, and this may result 
in R wave misdetection or non-detection. This leads 
to RRI miscalculations, which make it virtually 
impossible to accurately calculate HRV features. 
Thus, when HRV features are calculated under every-
day environments using a shirt-type wearable ECG 
device, it is critically important to employ a reliable 
R wave detection algorithm that is capable of han-
dling measurement faults caused by body movements 
in order to minimize the instances of miscalculated 
RRIs (i.e., R wave misdetection and non-detection).

NTT brought together experts from different NTT 
laboratories to develop a more accurate method of 
ECG waveform analysis. The members involved 
were from NTT Service Evolution Laboratories, 
where they have biosignal processing know-how, and 
from NTT Media Intelligence Laboratories, where 
they have audio/acoustic signal processing expertise. 
The ECG waveform analysis method they developed 
is based on NCWE and can detect more accurate R 
waves even when using shirt-type wearable ECG 
devices such as a “hitoe” shirt.

A schematic overview of how our algorithm detects 
R waves from target ECGs is shown in Fig. 4. The 

Fig. 3.   Schematic diagram of ECG waveform with measurement faults due to stretching of electrodes.
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*3	 Measurement faults: States when we cannot measure precise 
ECGs due to changes in contact between measurement electrodes 
and skin caused by certain body movements. This can cause 
noise or artifacts as shown as Fig. 3 in the measured ECG and 
impede HRV analysis including R wave detection. 
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algorithm puts a general wavelet transform used in 
audio/acoustic signal processing or ECG waveform 
analysis into practice to reduce the effects of mea-
surement faults derived from body movements such 
as low-frequency noise and to detect R waves by  
following apparently diverse waveform changes of R 
waves. Furthermore, we reduce the number of misde-
tected R waves caused by measurement faults such as 
artifacts not by simply using all detected R waves as 
they are, but by using only feasible R wave candi-
dates in RRI calculation; we select certain R wave 
candidates as feasible ones based on formerly mea-
sured R waves. 

One key in this analysis scheme is a mother wave-
let; we employed a complex wavelet as a mother 
wavelet for primary R wave detection, which makes 
it possible to detect R waves from ECGs with noise 
or artifacts measured by shirt-type wearable ECG 
devices. Most conventional R wave detection algo-
rithms employ a real wavelet as a mother wavelet. 
This makes it hard to follow diverse changes of R 
waves by using just one mother wavelet. Our use of a 

complex wavelet instead of a real wavelet enables the 
algorithm to follow apparent R wave waveform 
changes by employing just one mother wavelet with 
phase rotation. Moreover, this phase information is 
utilized to select feasible R wave candidates. We 
select such candidates by making use of three differ-
ent perspectives—periodicity, amplitude, and 
phase—all of which we calculate through ECG wave-
form analysis using NCWE. 

To verify the effectiveness of our ECG waveform 
analysis using NCWE under actual environmental 
conditions, we compared RRIs calculated using our 
approach with those resulting from a conventional R 
wave detection algorithm. We targeted the same 
ECGs measured with shirt-type wearable ECG devic-
es while the user carried out normal exercises and 
body movements including stretching, bending, and 
twisting, all of which typically induce measurement 
faults. 

The experimental results shown in Fig. 5 indicate 
that our algorithm successfully calculated stable 
RRIs, in contrast to the conventional algorithm, even 

Fig. 4.   Overview of ECG waveform analysis based on NCWE.
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in the presence of measurement faults. This result 
indicates that our algorithm can potentially improve 
the accuracy of a range of processes including state 
estimation based on HRV using shirt-type wearable 
ECG devices such as a “hitoe” shirt by improving the 
accuracy of RRIs as well as HRV features calculated 
from RRIs. 

4.   RRI outlier processing 

To calculate more accurate RRIs and HRV features, 
our RRI outlier processing technique [9–11] focuses 
on misdetected R waves contained in the RRIs. This 
process should be conducted between R wave detec-
tion and HRV feature calculation in the HRV analysis 
(Fig. 2). A schematic diagram of our RRI outlier pro-
cessing is illustrated in Fig. 6. Although there are 
many R wave detection algorithms as described 
above, it is almost impossible to completely suppress 
misdetected R waves due to artifacts, whose frequen-
cy characteristics are quite similar to those of R 
waves. Because HRV analysis only requires accurate 
RRIs without any outliers, we should exclude the 
misdetected RRIs derived in artifacts as outliers. 
However, conventional HRV analyses mostly target 
ECGs without any measurement faults and only 

exclude the RRIs as outliers whose duration charac-
teristics deviate from those of the majority of RRIs. 
Therefore, we cannot exclude certain RRIs including 
misdetected R waves as outliers, especially when the 
duration characteristics of those RRIs are close to 
those of the other RRIs. 

Another problem can occur when we calculate fre-
quency domain measures of HRV (hereafter, fHRV) 
where we should conduct two additional preprocess-
ing steps before feature calculation to appropriately 
analyze frequency characteristics of RRI time series 
data. These steps are data resampling using an inter-
polation function and power spectral density calcula-
tion by spectral analysis [1]. When the gap in missing 
RRIs is too long, we may fail to accurately calculate 
fHRV due to oscillation of the interpolation function 
to the outliers or due to overestimation of specific 
frequency components in data resampling using the 
interpolation function. 

To accurately calculate HRV features under these 
situations, our RRI outlier processing method con-
ducts two additional processes based on inherent 
HRV analysis: RRI outlier exclusion [9] and missing 
RRI complementation [10, 11]. In RRI outlier exclu-
sion, we exclude all RRIs that possibly include mis-
detected R waves based on the calculated measurement 

Fig. 5.   Experimental results of RRI calculation.
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reliability. We first evaluate the measurement status 
of all detected R waves based on their electric poten-
tial and then evaluate the measurement reliability of 
RRIs based on the combined measurement status of 
two R waves. Thus, we can exclude certain RRIs with 
low measurement reliability as possible outliers 
derived from measurement faults [9]. 

Furthermore, when calculating fHRV, we comple-
ment missing RRIs before conducting data resam-
pling in order to properly resample target data by 
using an interpolation function [10, 11]. The combi-
nation of RRI outlier exclusion and missing RRI 
complementation can limit the aforementioned prob-
lems that may occur in conventional data resampling 
and enable more accurate fHRV calculation. 

As a preliminary evaluation before the validation 
analysis under actual environmental conditions, we 
evaluated the effectiveness of RRI outlier exclusion 
and missing RRI complementation by using pseudo 
ECGs*4 with correct R wave annotation, which 
assumes inherent measurement faults occurring with 
shirt-type wearable ECG devices. The experimental 
results shown in Fig. 7 indicate that our proposed RRI 
outlier processing methods were effective for time 
domain measures of HRV (Fig. 7(a)) as well as fHRV 
(Fig. 7(b)), and combining both of them was more 
effective than RRI outlier exclusion alone in fHRV 
calculation. Furthermore, even more accurate HRV 

features could be calculated by combining an R wave 
detection algorithm based on NCWE and RRI outlier 
processing methods.

5.   Summary

In this article, we presented two new methods, ECG 
waveform analysis based on NCWE and RRI outlier 
processing, that work together as preprocessing steps 
in HRV analysis. The combination of both methods 
enables more accurate calculation of HRV features 
when using shirt-type wearable ECG devices such as 
a “hitoe” shirt and may indirectly contribute to 
expanding the use of such garments for sports or 
labor health management purposes. We will continue 
to pursue research and development activities to 
achieve healthcare support services using shirt-type 
wearable ECG devices including “hitoe” shirts in col-
laboration with other NTT Group companies.

Fig. 6.   RRI outlier processing. 
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*4	 Pseudo ECGs: We artificially generated target pseudo ECGs by 
mixing the MIT-BIH Arrhythmia Database [12], which we used 
for ECG signals, and the MIT-BIH Noise Stress Test Database 
[13], which we used for noise or artifacts.
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