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1.   Introduction

Automatic speech recognition technology has pro-
gressed greatly in recent years, thus enabling the 
rapid adoption of speech interfaces in smartphones or 
smart speakers. However, the performance of current 
speech interfaces deteriorates severely when several 
people speak at the same time, which often happens 
in everyday life, for example, when we take part in 
discussions or when we are in a room where a televi-
sion is on in the background. The main reason for this 
problem arises from the inability of current speech 
recognition systems to focus solely on the voice of 
the target speaker when several people are speaking 
[1].

In contrast to current speech recognition systems, 
human beings have a selective hearing ability (see 
Fig. 1), meaning that they can focus on speech spo-
ken by a target speaker even in the presence of noise 
or other people talking in the background by exploit-

ing information about the characteristics of the voice 
and the position of the target speaker.

Previous attempts to replicate computationally the 
human selective hearing ability used information 
about the target speaker position [1]. With these 
approaches, it is hard to focus on a target speaker 
when the speaker’s position is unknown or when he/
she moves, which limits their practical usage.

We have proposed SpeakerBeam [2], a novel 
approach to mimic the human selective hearing abil-
ity that focuses on the target speaker’s voice charac-
teristics (see Fig. 2). SpeakerBeam uses a deep neural 
network to extract speech of a target speaker from a 
mixture of speech signals. In addition to the speech 
mixture, SpeakerBeam also inputs the characteristics 
of the target speaker’s voice so that it can extract 
speech that matches these characteristics. These 
voice characteristics are computed from an adapta-
tion utterance, that is, another recording (about 10 
seconds long) of the target speaker’s voice.

SpeakerBeam: A New Deep Learning 
Technology for Extracting Speech of 
a Target Speaker Based on the 
Speaker’s Voice Characteristics
Marc Delcroix, Katerina Zmolikova, Keisuke Kinoshita, 
Shoko Araki, Atsunori Ogawa, and Tomohiro Nakatani

Abstract
In a noisy environment such as a cocktail party, humans can focus on listening to a desired speaker, an 

ability known as selective hearing. Current approaches developed to realize computational selective 
hearing require knowing the position of the target speaker, which limits their practical usage. This article 
introduces SpeakerBeam, a deep learning based approach for computational selective hearing based on 
the characteristics of the target speaker’s voice. SpeakerBeam requires only a small amount of speech 
data from the target speaker to compute his/her voice characteristics. It can then extract the speech of 
that speaker regardless of his/her position or the number of speakers talking in the background.

Keywords: deep learning, target speaker extraction, SpeakerBeam

Feature Articles: Further Exploring Communication 
Science



Feature Articles

20NTT Technical Review Vol. 16 No. 11 Nov. 2018

Consequently, SpeakerBeam enables the extraction 
of the voice of a target speaker based solely on the 
target speaker’s voice characteristics without know-
ing his/her position, thus opening new possibilities 
for the speech recognition of multi-party conversa-
tions or speech interfaces for assistant devices. 

In the remainder of this article we briefly review 
conventional approaches for selective hearing. We 
then detail the principles of the proposed Speaker-
Beam approach and present experimental results 
confirming its potential. We conclude this article with 
an outlook on possible applications of SpeakerBeam 
and future research directions.

2.   Conventional approaches for computational 
selective hearing

Much research has been done with the aim of find-
ing a way to mimic the selective hearing ability of 
human beings using computational models. Most of 
the previous attempts focused on audio speech sepa-
ration approaches that separate a mixture of speech 
signals into each of its original components [1, 3]. 
Such approaches use characteristics of the sound 
mixture such as the direction of arrival of the sounds 
to distinguish and separate the different sounds. 

Speech separation can separate all the sounds in a 
mixture, but for this purpose it must know or be able 
to estimate the number of speakers included in the 
mixture, the position of all the speakers, and the  

Fig. 1.   Human selective hearing ability.
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Fig. 2.   SpeakerBeam’s selective hearing capability.
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background noise statistics. These conditions often 
change dynamically, making their estimation difficult 
and thus limiting the actual usage of the separation 
methods. Moreover, to achieve selective hearing, we 
still need to inform the separation system which of 
the separated signals corresponds to that of the target 
speaker. 

3.   Principles of SpeakerBeam

SpeakerBeam focuses on extracting only the target 
speaker instead of separating all components in the 
mixture. By focusing on the simpler task of solely 
extracting speech that matches the voice characteris-
tics of the target speaker, SpeakerBeam avoids the 
need to estimate the number of speakers, the position, 
or the noise statistics. Moreover, it can perform target 
speech extraction using a short adaptation utterance 
of only about 10 seconds.

SpeakerBeam is implemented by using a deep neu-
ral network that consists of a main network and an 
auxiliary network as described below and shown in 
Fig. 3.
(1)  The main network inputs the speech mixture 

and outputs the speech that corresponds to the 
target speaker. The main network is a regular 
multi-layer neural network with one of its hid-
den layers replaced by an adaptive layer [4, 5]. 
This adaptive layer can modify its parameters 
depending on the target speaker to be extracted; 
namely, it can change its parameters depending 
on the characteristics of the voice of the target 
speaker provided by the auxiliary network.

(2)  The auxiliary network is a multi-layer neural 

network that inputs a recording of only the voice 
of the target speaker (adaptation utterance) that 
is different from that in the speech mixture. The 
auxiliary network outputs the characteristics of 
the voice of the target speaker. 

These two networks are connected to each other 
and trained jointly to optimize the speech extraction 
performance. Training the auxiliary network jointly 
with the main network enables the system to learn 
automatically from data the features that best charac-
terize the target speaker’s voice, thus avoiding the 
complex task of manually engineering features char-
acterizing the target speaker’s voice. Moreover, by 
training the network with a large amount of training 
data covering various speakers and background noise 
conditions, SpeakerBeam can learn to achieve selec-
tive hearing even for speakers that were not included 
in the training data. Details of the network architec-
ture and training procedure are explained in our pub-
lished report [2].

4.   Performance of SpeakerBeam

We conducted experiments to evaluate the speech 
extraction performance of SpeakerBeam and its 
impact on speech recognition [2]. We used a corpus 
consisting of sentences read from English newspaper 
articles and created artificially mixtures of two speak-
ers. Although SpeakerBeam can work with a single 
microphone, it achieves better performance when 
using more microphones. In this experiment, we used 
eight microphones and combined SpeakerBeam with 
microphone array processing (i.e., beamforming). 

An example of processed speech using SpeakerBeam 

Fig. 3.   Novel deep learning architecture developed for SpeakerBeam.
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and the speech recognition accuracy obtained when 
recognizing mixtures of two speakers with Speaker-
Beam (red bar) and without it (blue bar) are shown in 
Fig. 4. We observed a 60% relative improvement in 
speech recognition performance with SpeakerBeam. 

SpeakerBeam can also be employed to improve the 
audible quality. Interested readers can refer to a video 
[6] to appreciate the target speaker extraction perfor-
mance in realistic conditions (real recordings in 
reverberant conditions with music in the back-
ground).

5.   Outlook

SpeakerBeam is a novel approach to perform com-
putational selective hearing that offers several advan-
tages compared to previous approaches. For example, 
it can track a target speaker regardless of the number 
of speakers or noise sources in the mixture and 
regardless of the speaker’s position. This opens new 
possibilities for speech recognition of multi-party 
conversations, speech interfaces for assistant devices 
such as smart speakers, or for voice recorders and 
hearing aids that could focus on the speech of a target 
speaker.

However, there are some issues that need to be 
addressed before SpeakerBeam can be widely used. 
For example, speech extraction performance degrades 
when two speakers with similar voices speak at the 
same time. To tackle this issue, we plan to investigate 
improved target speaker characteristics that could 
better distinguish speakers and to combine target 
speaker characteristics with location information 

such as direction-of-arrival features.
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Fig. 4.   Evaluation of speech extraction performance and automatic speech recognition with SpeakerBeam.
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