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1.   Introduction

Ultrahigh-speed optical communications technolo-
gy is the fundamental technology that determines the 
transmission performance of optical networks. In a 
backbone network, multiple ultrahigh-speed client 
signals such as 400G Ethernet (400GE; standardized 
in 2017) are accommodated in high-speed optical 
channels based on digital coherent transmission tech-
nology [1], and multiple high-speed optical channels 
are combined by wavelength division multiplexing 
(WDM) to implement a long-distance high-capacity 
optical network. Meanwhile, the rate of internal data 
transmission between servers in datacenters that sup-
port various services such as social networking and 
video distribution services is becoming very large, 
and so is the demand for communications between 
multiple datacenters. Compared with the backbone 

network, the transmission distances are shorter, but 
greater economy is required, and high-speed data 
transmission is implemented by employing a tech-
nique called intensity-modulation direct-detection 
(IM-DD), which has a simple transceiver configura-
tion.

2.   Technical issues in increasing the optical 
signal data rate

Optical communications technology capable of 
accommodating 100-Gbit/s and 400 Gbit/s client sig-
nals per channel has already been put to practical use 
[2]. During the Ethernet standardization activities, 
discussions were initiated and are continuing on the 
next transmission speed standard, with 800 Gbit/s 
and 1.6 Tbit/s being cited as possible candidates. In the 
future, optical networks are expected to accommodate 
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high-speed client signals at speeds of over 1 Tbit/s 
per channel.

The three key elements of high-speed optical sig-
nals are shown in Fig. 1. Conventional IM-DD sys-
tems transmit information using binary light intensity 
signals (either on or off), but by using the digital 
coherent technique shown in Fig. 2, it is now possible 
to use optical amplitude and phase information to 
transmit signals with four or more values per pulse. In 
addition, by performing digital signal processing in 
the transceiver, it is possible to equalize and compen-
sate for wavelength deformation caused by polariza-
tion separation and wavelength dispersion and polar-
ization mode dispersion that occur inside the optical 
fibers, resulting in substantial increases in the trans-
mission range and data transmission rate.

Currently, practical optical signals carrying data at 
a rate on the order of 100 Gbit/s per channel are 
achieved by using polarization multiplexing to com-
bine 4-value quadrature phase-shift keying (QPSK) 
signals at a rate of 32 Gbaud. In addition, 400-Gbit/s 
optical signals are achieved by using two carriers 
(wavelengths) to carry two 16-quadrature amplitude 
modulation (QAM)*1 polarization multiplexed sig-
nals at 32 Gbaud in a single transmission channel.

There are also three key elements for speeding up 
optical signals (Fig. 1). The first is to use a higher 
baud rate (light pulse speed). If the baud rate is 
increased, this provides a corresponding increase in 
the transmission rate per wavelength. If signals have 

the same number of bits per symbol, then the baud 
rate can be increased without any excessive deteriora-
tion of reception sensitivity, but in order to transmit 
and receive these high baud rate signals, it is neces-
sary to use devices that are capable of operating at 
high speed, including electrical devices such as digi-
tal-to-analog converters (DACs), analog-to-digital 
converters (ADCs), and optical devices such as opti-
cal modulators and balanced photo detectors (BPDs). 
Also, in the frequency domain, the bandwidth occu-
pied by optical signals increases in proportion to the 
baud rate. This means that fewer signals can be com-
bined by WDM, so unless this approach is combined 
with the use of a higher number of bits per symbol as 
described later, the overall capacity of the transmis-
sion system will not increase.

The second element is the use of more bits per sym-
bol. By increasing the number of optical amplitude 
levels and phases used for signal transmission, it is 
possible to increase the number of bits that can be 
transmitted in a single optical pulse. For a given baud 
rate, the transmission speed improves in proportion to 
the number of bits per symbol*2. With more bits per 
symbol, devices such as DACs and ADCs must have 
greater resolution and linearity, and the required  
signal-to-noise ratio (SNR) also increases. This 

*1	 QAM: A highly efficient digital modulation scheme where data 
are transmitted as a series of multilevel codes by modulating the 
amplitude and phase of a carrier signal at multiple levels.

Fig. 1.   Three key elements of high-speed optical signals.
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decreases the maximum transmission distance, and 
reduces the resilience to signal distortion. Although 
QAM with a square constellation is currently used, it 
is possible to improve the required SNR by using a 
modified constellation.

The third element is the use of multicarrier trans-
mission. By configuring one channel from optical 
signals of multiple wavelengths (carriers), it is pos-
sible to increase the capacity per channel in propor-
tion to the number of carriers. This is an effective 
method for configuring a logical high-speed channel 
in an optical network. For example, it is possible to 
achieve a channel speed of 1 Tbit/s by bundling five 
200-Gbit/s per wavelength optical wavelengths at dif-
ferent wavelengths into a single channel. However, 
since this increases the required number of transceiv-
ers, the abovementioned increases in baud rate and 
number of bits per symbol result in a higher transmis-
sion rate per wavelength but require the application of 

multicarrier technology that takes transmission per-
formance and economy into consideration.

Thus, in order to attain ultrahigh-speed optical 
transmission at rates in excess of 1 Tbit/s per channel, 
it is essential to increase the baud rate and the number 
of bits per symbol, and while developing high-speed 
devices, it is necessary to use highly sensitive digital 
signal formatting and signal processing technology 
that enable the device requirements to be relaxed.

Fig. 2.   Schematic diagram of coherent optical transceiver.
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*2	 Improvement proportional to bits per symbol: For example, the 
number of bits per symbol is doubled by switching from QPSK 
with a four-point constellation (4 = 22) to 16QAM with a 16-
point constellation (16 = 24); however, switching from 16QAM 
to 64QAM only increases the number of bits per symbol by a 
factor of 1.5 (from 4 to 6).
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3.   Digital calibration technology and 
high-sensitivity technology to maximize 

device performance

Signal degradation may occur when transmitting 
and receiving high-speed signals, even if the band-
width of the electrical device or optical device meets 
the respective requirements. For example, as shown 
in Fig. 2, a digital coherent transmitter requires four 
DACs and two IQ (in-phase and quadrature) modula-
tors for each polarization component. The receiving 
side requires four BPDs and four ADCs. Due to dif-
ferences such as variations within manufacturing 
tolerances, the characteristics of these devices and the 
connections between them may not necessarily be 
uniform when they are all interconnected. These sorts 
of errors can have a major impact on the signal qual-
ity of high baud rate signals and signals with a large 
number of bits per symbol.

At our laboratory, we have managed to achieve 
substantial improvements in signal quality by digi-
tally correcting device imperfections on the receiving 
side, and by using digital signal processing on the 
transmitting side to perform ultra-precise pre-equal-
ization and calibration of the frequency characteris-
tics and variation of devices in the transmitter. The 
optical spectrum of a 64-Gbaud 64QAM signal 
before and after calibration is shown in Fig. 3(a). Pre-
equalization smooths out the optical spectrum and 
improves its quality so that the indistinct signal con-
stellation is resolved into a set of 64 clearly distin-
guishable points [3]. 

Also, with regard to the loss of sensitivity at a 

higher number of bits per symbol, we are studying 
how the signal constellation can be adapted in order 
to increase the signal sensitivity. Conventionally, 
multilevel QAM signals such as QPSK, 16QAM, and 
64QAM have used signal constellations in which 
every point appears with equal probability. Although 
a multilevel QAM signal can be generated from the 
original bit sequence by using simple mapping and 
demapping processes, this does not yield an optimal 
signal constellation from an information theoretical 
point of view.

Attention has recently been focused on informa-
tion-theoretical signal point-shaping techniques that 
can be used to achieve near-optimal signal constella-
tions by arranging the constellation points of multi-
level QAM signals based on probability distributions. 
Although this technique requires dedicated mapping 
and demapping processes, it enables the same num-
ber of data bits to be transmitted with a lower mini-
mum SNR than that of multilevel QAM. Also, since 
the number of data bits to be transmitted can be 
changed by changing the probability distribution of 
constellation points without changing the base multi-
level QAM signal, there is no need to modify the 
signal processing algorithm used for modulation and 
demodulation.

Our laboratory has conducted a successful test demon-
stration of 800 Gbit/s per wavelength transmission  
by using this pre-equalization calibration technique 
and 256QAM-based constellation shaping as shown 
in Fig. 3(b) [4]. With this technique, an optical 
network can use one or two wavelengths to accom-
modate client signals of 800 Gbit/s and 1.6 Tbit/s, 

Fig. 3.   Experimental results employing calibration technology and constellation shaping.
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which are candidate data rates for the next-genera-
tion Ethernet standard.

4.   Bandwidth doubling technology for 
high-speed signal generation

One of the most important devices for generating 
high-speed optical signals is the DAC. DACs are inte-
grated with digital signal processing LSIs (large-
scale integrated circuits), but the analog bandwidth of 
DACs fabricated using Si CMOS (silicon comple-
mentary metal oxide semiconductor) is currently 
around 40 GHz. While the above calibration tech-
nique enables some correction, it becomes a bottle-
neck at high baud rates beyond 100 Gbaud. Our labo-
ratory proposed bandwidth doubling technology that 
can double the analog bandwidth of a DAC. This 
technology involves preliminary signal processing of 
the desired wideband signal and outputting signals 

from two DACs. Using an analog multiplexer 
(AMUX) circuit [5] to combine these signals makes 
it possible to generate high-speed signals with twice 
the bandwidth.

We proposed the two bandwidth doubling methods 
shown in Fig. 4, and by applying these two methods 
to digital coherent transmission technology, we con-
ducted an experimental demonstration of ultrahigh 
baud rate signal transmission using DACs with a 
32-GHz analog bandwidth. We show in Fig. 5(a) the 
results of a transmission experiment using a 120-
Gbaud signal generated using the spectral method 
shown in Fig. 4(a). In this experiment, we success-
fully transmitted data at a net rate*3 of 600 Gbit/s per 
wavelength over a long distance of approximately 

Fig. 4.   Bandwidth doubling technologies using digital pre-processing and AMUX circuit.
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4000 km [6]. Also, for the addition/subtraction pro-
cessing method shown in Fig. 4(b), we made a proto-
type circuit integrated with two AMUX circuits, and 
we successfully generated 120-Gbaud QPSK signals 
as shown in Fig. 5(b) [7]. 

In theory, it is difficult to generate high-quality sig-
nals at 100 Gbaud or above using 40-GHz DACs, 
because the DACs require a bandwidth of at least half 
the baud rate. With our technique, it is possible to 
extend the bandwidth of existing DACs, enabling the 
signal baud rate to be increased. In addition, by com-
bining the abovementioned calibration and sensitivity 
enhancement techniques, we have found that it is pos-
sible to achieve ultrahigh-speed signal transmission 
at over 1 Tbit/s per wavelength without resorting to 
multicarrier technology [8]. 

5.   Application of ultrahigh-speed optical 
communications technology to 
short-distance communications

The simple and highly economical system configu-
ration of the IM-DD method has attracted attention as 
an optical communications technique for short-dis-
tance communications on the order of a few tens of 
kilometers at most, where most traffic occurs between 
servers or between datacenters. The recently stan-
dardized 400GE system uses PAM4 (4-level pulse 
amplitude modulation) to produce four parallel 
100-Gbit/s signals per wavelength and thus requires 
four sets of transceiver equipment. At our laboratory, 
we have performed successful short-distance trans-
missions over 20 km at a bit rate of 400 Gbit/s using 

a single transceiver by combining bandwidth dou-
bling technology with an ultra-wideband indium 
phosphide (InP) modulator [9, 10]. This is the world’s 
highest transmission rate for IM-DD using a single 
wavelength and a single polarization.

The results of this transmission test are shown in 
Fig. 6. In this experiment, we used an InP optical 
modulator with an exceptionally wide bandwidth 
together with a bandwidth doubler to generate a 
wideband electrical signal and were able to generate 
optical signals while maintaining the wide bandwidth 
of the electrical signal. Also, by using DMT (discrete 
multitone) as the modulation method, we generated 
256 subcarrier signals by digital signal processing, 
and by allocating appropriate signal bits to each car-
rier according to the frequency characteristics of the 
electrical and optical devices, we achieved near-
optimal bit allocation.

For example, as shown in Fig. 6(b), a high-SNR 
6.96-GHz subcarrier is used for 64QAM signals, and 
a low-SNR 9.10-GHz subcarrier is used for 16QAM 
signals. The use of bandwidth doubling technology 
and a wideband modulator has made it possible to 
allocate even multilevel signals such as 16QAM to 
the high frequency domain. With this technology, it is 
expected that transmission rates of over 400 Gbit/s 
per wavelength can be achieved by IM-DD with a 
simple and economical transceiver configuration.

6.   Summary

In this article, we introduced ultrahigh-speed opti-
cal transmission technology that combines digital 

Fig. 5.   High-speed signal experiments using bandwidth doubling technologies.
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signal processing and high-speed circuit technology 
to achieve optical networks that will form the  
infrastructure of an advanced information society. We 
have shown that this technology is capable of ultra-
high-speed optical transmission at over 1 Tbit/s per 
wavelength. In the future, we will keep working on 
improving the speed and will continue with our 
research and development so that this technology can 
provide a highly reliable communications infrastruc-
ture.

References

[1]	 Y. Miyamoto, A. Sano, E. Yoshida, and T. Sakano, “Ultrahigh-capac-
ity Digital Coherent Optical Transmission Technology,” NTT Techni-
cal Review, Vol. 9, No. 8, 2011.

	 https://www.ntt-review.jp/archive/ntttechnical.php?contents= 
ntr201108fa2.html

[2]	 Y. Kisaka, M. Tomizawa, and Y. Miyamoto, “Digital Signal Processor 
(DSP) for Beyond 100G Optical Transport,” NTT Technical Review, 
Vol. 14, No. 9, 2016. 

	 https://www.ntt-review.jp/archive/ntttechnical.php?contents= 
ntr201609fa2.html

[3]	 A. Matsushita, M. Nakamura, F. Hamaoka, S. Okamoto, and Y. Kisa-
ka, “High-spectral-efficiency 600-Gbps/Carrier Transmission Using 
PDM-256QAM Format,” J. Lightw. Technol., Vol. 37, No. 2, pp. 
470–476, 2019. 

[4]	 M. Nakamura, A. Matsushita, S. Okamoto, F. Hamaoka, and Y. Kisa-
ka, “Spectrally Efficient 800 Gbps/Carrier WDM Transmission with 

100-GHz Spacing Using Probabilistically Shaped PDM-256QAM,” 
Proc. of the 44th European Conference on Optical Communication 
(ECOC 2018), Rome, Italy, Sept. 2018.

[5]	 M. Nagatani, H. Yamazaki, F. Hamaoka, H. Nosaka, and Y. Miyamo-
to, “Bandwidth Doubler Technology for Increasing the Bandwidth of 
an Optical Transmitter,” NTT Technical Journal, Vol. 29, No. 3, pp. 
62–66, 2017 (in Japanese).

[6]	 M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. 
Nagatani, A. Hirano, and Y. Miyamoto, “Low-complexity Iterative 
Soft-demapper for Multidimensional Modulation Based on Bitwise 
Log Likelihood Ratio and Its Demonstration in High Baud-rate Trans-
mission,” J. Lightw. Technol., Vol. 36, No. 2, pp. 476–484, 2018.

[7]	 F. Hamaoka, M. Nakamura, M. Nagatani, H. Wakita, H. Yamazaki, T. 
Kobayashi, H. Nosaka, and Y. Miyamoto, “Electrical Spectrum Syn-
thesis Technique Using Digital Pre-processing and Ultra-broadband 
Electrical Bandwidth Doubler for High-speed Optical Transmitter,” 
Electron. Lett., Vol. 54, No. 24, pp. 1390–1391, 2018.

[8]	 M. Nakamura, F. Hamaoka, M. Nagatani, H. Yamazaki, T. Kobayashi, 
A. Matsushita, S. Okamoto, H. Wakita, H. Nosaka, and Y. Miyamoto, 
“1.04 Tbps/carrier Probabilistically Shaped PDM-64QAM WDM 
Transmission over 240 km Based on Electrical Spectrum Synthesis,” 
Proc. of the 42nd Optical Fiber Communication Conference and 
Exhibition (OFC 2019), paper M4I.4., San Diego, CA, USA, Mar. 
2019.

[9]	 M. Nagatani, H. Wakita, Y. Ogiso, H. Yamazaki, M. Ida, and H. 
Nosaka, “Ultrahigh-speed Optical Front-end Device Technology for 
Beyond-100-GBaud Optical Transmission Systems,” NTT Technical 
Review, Vol. 17, No. 5, pp. 27–33, 2019.

	 https://www.ntt-review.jp/archive/ntttechnical.php?contents= 
ntr201905fa4.html

[10]	 H. Yamazaki, M. Nagatani, H. Wakita, Y. Ogiso, M. Nakamura, M. 
Ida, T. Hashimoto, H. Nosaka, and Y. Miyamoto, “Transmission of 
400-Gbps Discrete Multi-tone Signal Using > 100-GHz-bandwidth 
Analog Multiplexer and InP Mach-Zehnder Modulator,” Proc. of 
ECOC 2018, Rome, Italy, Sept. 2018.

Fig. 6.   Short reach application of digital-preprocessed analog-multiplexed DAC technology.
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