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1.   Introduction

The recent advances in digital coherent technology 
have increased the capacity of optical communica-
tions systems by improving spectral efficiency. 
According to Shannon’s Theory, a signal must have a 
high signal-to-noise ratio (SNR) if we are to achieve 
a system with high spectral efficiency. However, it 
has been pointed out that any attempt to improve the 
SNR is limited due to the accumulation of noise aris-
ing from optical amplifiers and signal waveform dis-
tortion (nonlinear impairments) caused by the nonlin-
ear effect in the optical transmission fiber itself  
(Fig. 1(a)) [1]. New technologies designed to over-
come this limit are now required if we are to improve 
the SNR in optical transport systems.

2.   Optical parametric amplification technology 
based on periodically poled lithium niobate 

(PPLN) waveguides

With conventional optical amplifiers such as the 
widely used erbium-doped fiber amplifier (EDFA), 
the noise figure cannot be reduced below the 3-dB 
quantum limit, which means that a multi-repeater 

transmission accumulates excess noise (Fig. 1(b)). 
Phase sensitive amplification (PSA), which has a 
phase-dependent amplification property, provides an 
ideal noise figure of 0 dB [2]. In other words, it makes 
optical amplification without SNR degradation pos-
sible (Fig. 1(b)).

Current digital coherent systems achieve long-haul 
transmission by using electrical digital signal pro-
cessing in the transmitter/receiver to compensate for 
various types of signal waveform distortion that are 
present after signals are transmitted through optical 
fiber. In the future, as transmission capacity is further 
increased, signal waveform distortion in optical fiber 
(nonlinear impairment) will become apparent and 
will limit the extension of the transmission distance 
(Fig. 1(c)). 

Optical phase conjugation (OPC)*1 has the potential 
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*1	 OPC: Light has the same sort of wave-like properties as radio 
waves, and the timing of a wave’s vibrations is called its phase. A 
wave in which the positive and negative phases have been re-
versed is called a phase conjugate wave, and the process of phase 
reversal is called optical phase conjugation. A phase conjugate 
wave is transmitted just as if it were traveling backwards in time, 
like a movie being played backwards, and is therefore sometimes 
called a time reversal wave.
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to mitigate the waveform distortion that occurs dur-
ing optical fiber transmission by generating a time 
reversal wave. This technique can be likened to play-
ing a movie backwards. If OPC is performed at a 
point in the middle of the optical fiber transmission 
path, the signal distortion that occurred in the first 
half of the transmission path can be compensated for 
in the second half. This makes it possible to improve 
the SNR by increasing the power of the optical sig-
nals. It also offers the possibility of simultaneously 
processing wavelength division multiplexed channels 
with a single optical phase conjugator. This is expect-
ed to greatly reduce both the amount of digital signal 
processing needed for distortion compensation and 
the electrical power consumption. 

The PSA/OPC is achieved by optical parametric 
amplification (OPA), which transfers the energy of an 
intense pump to the signal (Fig. 1(d)). PSA/OPC can 
be implemented by inputting the signal and the pump, 
which is approximately twice the frequency of the 
signal light, into a nonlinear optical medium while 
appropriately adjusting the wavelength assignments 
and the phase relation of the signal light and pump 
light.

Our research group has developed PPLN*2 as a 
nonlinear optical medium. We have developed a 
ridge-shaped waveguide structure that is highly resis-
tant to photorefractive damage [3], and high-preci-
sion waveguide fabrication technology [4], which 
enables us to both utilize a high-power pump and 

Fig. 1.   Optical parametric amplification technology based on periodically poled lithium niobate (PPLN) waveguides.
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achieve high conversion efficiency. We have also 
developed a fiber-pigtailed module that integrates a 
PPLN waveguide and couplers that split/multiplex 
pump light and signal light that have widely different 
wavelengths and thus achieve fiber input and output 
easily and stably (Fig. 1(d)). The module has four 
input/output fibers suitable for the respective wave-
lengths of the signal and pump light beams, and 
dielectric multilayer mirrors for multiplexing or split-
ting the signal and pump light beams. This structure 
achieves both high stability and low-loss optical cou-
pling between the optical fiber and a PPLN wave-
guide.

3.   Increased gain and expanded applicability of 
phase sensitive amplifier

In the OPA process, energy is transferred from a 
pump with a frequency of 2ω to a signal with a fre-

quency of ω1 and an idler with a frequency of ω2. If 
ω1 = ω2, the process is called degenerate OPA, and a 
PSA can be obtained with gain for the in-phase com-
ponent and attenuation for the quadrature phase com-
ponent with reference to the pump phase (Fig. 2(a)). 
At the start of this research, the gain of a PPLN mod-
ule was around 6 dB (quadruple). Now, having 
improved the efficiency of the PPLN waveguide and 
greatly reduced the coupling loss of the module, 
we can achieve a gain exceeding 25 dB (a 320-
fold increase) (Fig. 2(b)), which can sufficiently 

*2	 PPLN: Lithium niobate (LiNbO3) is a crystalline material that 
exhibits nonlinear optical effects that enable light waves of dif-
ferent wavelengths to interact with each other. PPLN is an artifi-
cial crystal in which the orientation of positive and negative 
charges in the crystal is forcibly inverted with a fixed period in-
side the crystal by spontaneous polarization. With PPLN, it is 
possible to achieve an overwhelmingly high nonlinear optical ef-
fect compared with the original lithium niobate crystal.

Fig. 2.   Increased gain and expanded applicability of phase sensitive amplifier.
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compensate for the loss in the fiber transmission 
span.

It is also extremely important to ensure compatibility 
with the wavelength division multiplexing (WDM) 
and digital coherent technology used in existing opti-
cal communications systems. We have not only 
improved the performance of PPLN devices but also 
expanded the applicability of PSA because the above-
mentioned degenerate OPA was only able to handle a 
binary modulation signal and a single wavelength. In 
addition, it could only amplify a single polarized 
wave since a second-order nonlinear optical medium 
such as PPLN is usually polarization dependent  
(Fig. 2(a)).

We have achieved the amplification of a quadrature 
amplitude modulation (QAM) signal and the simulta-
neous amplification of WDM signals (Fig. 2(c)) 
using nondegenerate OPA (ω1 ≠ ω2) in a parametric 
process. We have also achieved PSA of a polarization 
division multiplexing (PDM) signal by using a polar-
ization diversity configuration. In this configuration, 
the input signal is split with a polarization beam split-
ter (PBS), independently amplified with two OPA 
devices, and recombined using a PBS.

An experimental result for PSA of PDM- and 
WDM-16QAM signals using both nondegenerate 
parametric amplification and the polarization diver-
sity configuration is shown in Fig. 2(d) [5]. We 
placed 16 carrier waves at intervals of 100 GHz at the 
transmitter and generated 20-Gbaud PDM-16QAM 
signals with pairs of phase-conjugated light beams. 
An 80-km dispersion-compensated fiber was used as 
the transmission line. At the receiver, one of the 
WDM signals was extracted using an optical filter, 
received by a digital coherent receiver, and demodu-
lated using off-line signal processing. As shown in 
the input and output optical spectra in Fig. 2(d), all 16 
WDM signals were simultaneously amplified with a 
gain of over 20 dB. 

This figure shows the output spectrum of an EDFA 
with the same gain for comparison with the PSA. 
This comparison indicates that the optical SNR 
(OSNR) of the PSA was about 5 dB higher than that 
of the EDFA. The constellations of the PSA and the 
EDFA that were received and demodulated by a 
coherent receiver are also shown in Fig. 2(d). Distinct 
symbol separation with the demodulated signal for 
the PSA was clearly obtained as a result of low-noise 
amplification with a difference in signal quality (Q 
factor) of about 1 dB, which corresponded to the dif-
ference in OSNR. 

4.   Proposal for complementary spectral 
inversion OPC and mitigation of 

nonlinear impairments

Digital signal processing can compensate not only 
for linear signal distortion but also for a nonlinear 
signal. However, further enhancement of the compen-
sation performance requires an increase in the size of 
the signal processing circuit, which results in an 
increase in power consumption. OPC has long been 
studied with the aim of compensating for signal dis-
tortion in the optical domain without electrical signal 
processing. It was difficult to implement this 
approach with a high-capacity optical transmission 
system because conventional OPC occupies twice the 
bandwidth due to wavelength conversion, thereby 
reducing the spectral efficiency to less than half. To 
overcome this problem, we have developed a new 
optical signal processing circuit that spatially sepa-
rates WDM signals into long-wavelength and short-
wavelength signal channel groups and then applies 
OPC to each group using high-efficiency PPLN 
waveguide devices (Fig. 3(a)). Thus, we have 
achieved complementary spectrally inverted OPC 
that simultaneously compensates for the signal dis-
tortions of WDM signals without sacrificing the spec-
tral efficiency.

An experimental result for the simultaneous phase 
conjugation of WDM signals is shown in Fig. 3(b). 
We used 22.5-GBaud polarization multiplexed 
16QAM signals with 92 WDM channels with a 
25-GHz spacing. The optical spectrum at the trans-
mitter and that after transmission over 3840 km (12 
times recirculating loop transmission through a 320-
km line) are also shown in Fig. 3(b). A comparison of 
the optical spectra indicates that the original signal 
bandwidth was retained, although the short- and 
long-wavelength bands, each with 46 channels, were 
exchanged 12 times. In addition, guard-band-less 
conversion was achieved except for one channel in 
the middle between the short- and long-wavelength 
bands, which is the pump bandwidth. We then 
achieved the highest-level transmission experiment 
yet reported in terms of both capacity (13.6 Tbit/s) 
and spectral efficiency (5.84 bit/s/Hz) using OPC [6].

We also conducted a transmission experiment using 
96-Gbaud polarization multiplexed 8QAM signals in 
order to verify the applicability of this system to sig-
nals of 400 Gbit/s per channel. The transmission dis-
tances with and without OPC for respective optimal 
input powers of +6 dBm and +2 dBm are compared in 
Fig. 3(c). This means that the use of phase conjugation 
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enables a higher power optical signal to be input into 
a transmission fiber. Thus, it was demonstrated that 
the maximum transmission distance (when the for-
ward error correction threshold value Q = 5 dB) can 
be extended from 7040 km to 9600 km. This was the 
first demonstration showing that the use of phase 
conjugation to compensate for signal distortion can 
be applied to an ultrahigh-speed baud signal at a level 
of 400 Gbit/s [7].

5.   Future prospects

This article introduced the research and develop-
ment (R&D) of OPA for optical communications 
with a view to improving the SNR in optical transport 
systems. This technology provides low-noise amplifi-
cation and compensation for optical signal distortion 
and is also expected to lead to the generation/amplifi-
cation of coherent light with various wavelengths 

using wavelength conversion techniques, and to 
quantum information processing such as squeezed 
light and photon pair generation. By further exploring 
this technology, we aim to create innovative technol-
ogy that fully exploits optical coherence. Part of this 
research uses the results of “R&D on Optical Signal 
Transmission and Amplification with Frequency/
Phase Precisely Controlled Carrier” commissioned 
by the National Institute of Information and Commu-
nications Technology of Japan.
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