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1.   Trends and challenges in 
optical communications

The amount of data traffic in optical communica-
tions networks continues to grow exponentially due 
to the spread of broadband applications and services 
such as video streaming, cloud computing, and IoT 
(Internet of Things). In particular huge-capacity and 
long-haul transmission technology is required in the 
core network in order to accommodate client data and 
to link metropolitan areas. Novel digital coherent 
technology, which combines coherent detection and 
digital signal processing, has been deployed to cope 
with such rapid growth in communications traffic [1]. 
To date, 100-Gbit/s-per-channel (wavelength) sys-
tems based on 32-GBaud polarization division multi-
plexing (PDM) quadrature phase-shift keying and 
400-Gbit/s-per-channel systems based on two-sub-
carrier 32-GBaud PDM 16-ary quadrature amplitude 
modulation (16QAM) have been put into practical 
use. 

In the future, transmission capacity per channel is 
expected to exceed 1 Tbit/s to handle the ever-grow-
ing communications traffic. The transmission capac-

ity can be increased by increasing the symbol rate, 
increasing the modulation order, or adding more sub-
carriers. Increasing the symbol rate is the most advan-
tageous approach from the viewpoint of ensuring 
both cost effectiveness and transmission distance. 
Therefore, high-symbol-rate beyond-100-GBaud 
optical transmission technology is now attracting a 
great deal of attention for its use in constructing 
future optical transport systems with capacities 
exceeding 1 Tbit/s per channel.

Researchers face several challenges in constructing 
an optical transceiver enabling beyond-100-GBaud 
systems. A block diagram of a conventional optical 
transceiver for digital coherent systems is shown in 
Fig. 1. To construct a 100-GBaud system, each build-
ing block in the transceiver needs to have at least a 
50-GHz analog bandwidth, which is the Nyquist fre-
quency of 100 GBaud. One of the biggest challenges 
is finding a way to overcome the analog-bandwidth 
limitation of digital-to-analog converters (DACs) and 
analog-to-digital converters (ADCs), which are fabri-
cated using Si (silicon) complementary metal oxide 
semiconductor (CMOS) technology. 
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CMOS-based DACs and ADCs is shown in Fig. 2. 
This graph indicates that it is very hard for CMOS-
based DACs and ADCs to satisfy the target analog-
bandwidth of over 50 GHz. One more unavoidable 
challenge is determining how to integrate and assem-
ble optical front-end devices—modulator drivers 
(DRVs) and optical modulators on the transmitter 
side and trans-impedance amplifiers and photodiodes 
on the receiver side—into a packaged module to 
avoid a degradation in quality of beyond-100-GBaud 
signals due to extra loss derived from packaging. 

Hence, integration and packaging technology 
becomes much more important in beyond-100-
GBaud systems.

2.   Bandwidth doubler technology

We have devised novel bandwidth doubling tech-
nology to overcome the analog-bandwidth limitation 
of CMOS-based DACs and ADCs [2]. A block dia-
gram of an optical transceiver applying the band-
width doubler is shown in Fig. 3. On the transmitter 

Fig. 1.   Block diagram of conventional optical transceiver for digital coherent systems.
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side, two pre-processed analog signals from CMOS-
sub-DACs are multiplexed into one double-band-
width signal by the analog multiplexer (AMUX). On 
the receiver side, one broadband signal is demulti-
plexed into two half-bandwidth signals by the analog 
demultiplexer (ADEMUX), and they are digitized 
and post-processed by the following CMOS-sub-
ADCs and digital signal processor. Using this band-
width doubler technology, we can expand the usable 
baseband signal bandwidth twice and achieve twice 
the symbol rate compared with a conventional trans-
ceiver (which is why we call this technology band-
width doubler). 

The AMUX and ADEMUX integrated circuits 
(ICs) for the bandwidth doubler were designed and 
fabricated using our in-house indium phosphide het-
erojunction bipolar transistor (InP HBT) [3]. We have 
already succeeded in conducting a proof-of-principle 
experiment and beyond-100-GBaud optical transmis-
sion [4]. In addition, we recently demonstrated the 
world’s first 1-Tbit/s-per-channel long-haul WDM 

(wavelength division multiplexing) optical transmis-
sion using 120-GBaud probabilistically shaped PDM 
64QAM [5]. These results confirmed that the band-
width doubler is promising for future beyond-100-
GBaud systems.

3.   The latest AMUX IC and 160-GBaud 
signal generation

We are now developing faster AMUX and ADE-
MUX ICs to further improve optical transmission 
performance. Using newly developed in-house 0.25-
μm InP HBT technology [6], we succeeded in devel-
oping an AMUX IC with a bandwidth over 110 GHz 
(a world record) in 2018 [7]. The performance of the 
0.25-μm InP HBTs and AMUX IC is summarized in 
Fig. 4. The fabricated HBTs have a peak fT (cutoff 
frequency) and fmax (maximum oscillation frequency) 
of 460 and 480 GHz, respectively. The AMUX IC 
consists of two input buffers, a clock buffer, an 
AMUX core, and an output buffer. It is designed to 

Fig. 3.   Block diagram of optical transceiver applying bandwidth doubler technology.
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have broad peaking characteristics in its frequency 
response to compensate for packaging loss. 

The measured bandwidths for the analog and clock 
paths were both over 110 GHz. These measurement 
results indicate that this AMUX IC can potentially be 
used in constructing a 110-GHz-bandwidth 220-GS/s 
DAC subsystem and to generate 200-GBaud-class 
modulated signals. We have already demonstrated 
signal generation at ultrahigh symbol rates by apply-
ing this AMUX IC to the bandwidth doubler. The 

measurement setup and results are shown in Fig. 5. In 
this demonstration, we succeeded in generating a 
160-GBaud PAM-4 (4-level pulse amplitude modula-
tion) signal with two 40-GHz-bandwidth sub-DACs 
and the AMUX IC and demonstrating the further 
scalability of the bandwidth doubler technology [8]. 
Digital coherent optical transmission with a capacity 
of over 1-Tbit/s per channel will be achievable by 
using this AMUX IC.

Fig. 4.   Images of 0.25-μm InP HBT and AMUX IC and radio frequency performance of AMUX IC.
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4.   Concept of ultrahigh-speed integrated optical 
front-end module

One more important issue for beyond-100-GBaud 
systems is integration and packaging technology, as 
mentioned in the first section. This is especially true 
regarding the transmitter, where the AMUXs, DRVs, 
and optical modulators have to be placed as close to 
each other as possible. In addition, all these devices 
have to be assembled into one integrated packaged 
module in order to ensure the quality of ultrabroad-
band modulated signals. 

We have developed an AMUX IC equipped with a 
DRV function (AMUX-DRV IC) and studied a 
design incorporating the AMUX-DRV IC and optical 
modulators for an ultrahigh-speed integrated optical 
front-end module. Because monolithic integration of 
the AMUX function and DRV function into one chip 
is advantageous for ensuring the signal quality and 
reducing power consumption, we replaced an output 
buffer with a DRV function block consisting of a 
high-gain, high-linearity, and large-output-swing 
amplifier in the AMUX IC, and designed the AMUX-
DRV IC. For the optical front-end, we used in-house 
InP MZM (Mach-Zehnder modulator)-based optical 
IQ (in-phase and quadrature) modulators, which have 
an electro-optical (EO) modulation bandwidth of 80 
GHz. The AMUX-DRV IC was designed to have 

broad peaking characteristics to compensate for the 
frequency response of the following modulator and to 
have optimum output impedance and driving voltage 
for the modulator.

A conceptual block diagram of the integrated opti-
cal front-end module is shown in Fig. 6, which also 
summarizes the performance of the AMUX-DRV IC 
and InP MZM. The AMUX-DRV IC has broad peak-
ing characteristics and ultrabroad bandwidth of over 
110 GHz as expected. With this AMUX-DRV IC, the 
optical front-end module could be expected to have 
an ultrabroad EO bandwidth of 80 GHz. We have 
actually already fabricated a sub-assembly that con-
tains the AMUX-DRV IC and InP MZM and have 
succeeded in demonstrating 400-Gbit/s-per-channel 
DMT (discrete multi-tone) signal optical transmis-
sion [9]. This is a record for IMDD (intensity modu-
lation and direct detection) optical transmission so far 
and indicates the capability of over-1-Tbit/s-per- 
channel digital coherent optical transmission. In the 
next step, we will complete the optical front-end 
module and apply it to digital coherent optical trans-
mission.

5.   Summary

In this article, we introduced recent trends and chal-
lenges in optical communications and our research 

Fig. 6.    Conceptual block diagram of integrated optical front-end module and performance summary of AMUX-DRV IC and 
InP MZM.
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and development (R&D) of ultrahigh-speed optical 
front-end device technology for future beyond-100-
GBaud systems. We will continue to promote further 
speed improvements and continue with our R&D so 
that this technology can ensure sustainable progress 
of optical communications.
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