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1.   Introduction

Superconductivity is a phenomenon in quantum 
materials that allows for lossless transportation of 
electrical current, and thus of energy and information. 
The quantum phenomenon, superconductivity, had 
been observed only below –140°C (~130 K) until 
very recent reports on hydrides, that is, sulfur hydride 
(H3S) and lanthanum hydride (LaH10). These materi-
als show significantly higher superconducting transi-
tion temperatures (Tcs): –70°C (~200 K) for H3S [1] 
and even close to room temperature for LaH10 [2]. 
Synthesizing these hydrides, however, requires 
extremely high pressure, specifically, ~2 million 
times higher (~200 GPa) than the atmospheric pres-
sure. To make matters more complicated, their crystal 
structures are altered when the pressure is reduced 
after synthesis. In other words, the superconducting 

phases can exist only under an extremely high pres-
sure comparable to that at the core of the Earth. 
Accordingly, practical applications using these 
hydrides remain elusive despite the significance of 
their discoveries from an academic point of view. 

In contrast, cuprates are superconductors that 
exhibit the highest Tc under ambient pressure. Among 
them, YBa2Cu3O7-δ (yttrium barium copper oxide) as 
well as Bi2Sr2Ca2Cu3O10+δ (bismuth strontium calci-
um copper oxide), both of which show higher Tc (~90 
K and ~110 K, respectively) than the boiling point of 
nitrogen (77 K), have already yielded practical appli-
cations as superconducting cables and microwave 
filters. However, the mechanism of high-Tc supercon-
ductivity in cuprates remains unclarified despite 
immense efforts for over three decades, which has 
been hampering the strategic search of novel super-
conducting materials with a higher Tc. 
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Nonetheless, the fundamental structural ingredient 
of high-Tc cuprates is fortunately well known: copper 
peroxide (CuO2) planes, as exemplified by 
Bi2Sr2Ca2Cu3O10+δ (Fig. 1(a)). Two-dimensional 
CuO2 planes are made up of copper (Cu) and oxygen 
(O) and are separated by bismuth (Bi), strontium (Sr), 
calcium (Ca), and O. The formal valences of O and 
Cu are 2– and 2+, respectively, so the CuO2 plane is 
not charge-neutral and cannot exist independently. 
Instead, the minimal structural unit that is compass-
able is charge-neutral calcium copper oxide (CaCuO2) 
(Fig. 1(b)), which is commonly included in cuprates 
whose Tcs are above 100 K; the crystal structure 
shown in Fig. 1(b) is called an infinite-layer structure. 
That is why we have been focusing our research 
efforts on infinite-layer cuprates. Because the synthe-
sis of bulk specimens of CaCuO2 requires high pres-
sure levels (3–5 GPa), single-crystalline CaCuO2 
specimens can be prepared exclusively by using thin-
film growth methods, in our case, molecular beam 
epitaxy (MBE). Unlike the above-mentioned 
hydrides, the infinite-layer structure is stable at ambi-
ent pressure once it is formed. 

2.   Fabrication of ultrahigh-quality infinite-layer 
cuprate superconductors

While MBE has been widely used for the growth of 
semiconductors, we have extended it to the growth of 

complex transition metal oxides. Our customized 
MBE method is well equipped not only to synthesize 
novel complex transition metal oxides, for example, 
Sr3OsO6, a new ferromagnetic insulator with a Curie 
temperature > 1000 K [3], but also to push the limits 
of common crystal growth methods [4], and this is 
illustrated in Fig. 2. The vacuum recipient is 70 cm in 
diameter and 150 cm in height. A total of 10 metal 
sources are mounted at the bottom of the vacuum 
recipient where the elements can be evaporated by 
electron guns operated at 10 kV. The evaporant flux 
of each element is monitored and controlled by elec-
tron impact emission spectroscopy (EIES). The 
details of EIES are explained in another article in this 
issue [5]. 

Molecular oxygen (O2) is insufficient for the 
growth of complex transition metal oxides, and there-
fore, the oxide MBE system is equipped with stron-
ger oxidizing agents. This is distinct from conven-
tional MBE. In this work, radio-frequency radical 
oxygen (O) was used for the growth of infinite-layer 
cuprates. Oxidation/reduction involves the gain/loss 
of electrons. Radical oxygen has two unpaired elec-
trons and therefore a strong tendency to deprive the 
neighboring metal atoms of electrons. The absence of 
kinetic barriers in atomic oxygen is what drives the 
growth of complex transition metal oxides in an ultra-
high vacuum (~10–9 atm). In addition, the growth 
orientation is defined by the substrate; this phenomenon 

Fig. 1.   Crystal structures of cuprate superconductors.
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is called epitaxy (in Greek, order on top). We used a 
single-crystal substrate with a lattice constant closer 
to one for infinite-layer cuprates. This mechanism 
enables the formation of single-crystalline infinite-
layer cuprates. 

We used the oxide MBE system to synthesize 
superconducting infinite-layer Sr0.9La0.1CuO2 thin 
films [6–9]. In Sr0.9La0.1CuO2, strontium ions (Sr2+ 

ions) are partially substituted with La3+ ions (lantha-
num ions) to induce superconductivity. The depen-
dence of resistivity on temperature for the 
Sr0.9La0.1CuO2 thin film is plotted in Fig. 3. Resistiv-
ity decreases as the temperature decreases and 
abruptly goes to zero at 41 K. The films presented 
here are superior to those in other reports on super-
conducting infinite-layer thin films [10], as evidenced 

Fig. 2.   Oxide MBE setup.
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by the following characteristics:
•  sharp superconducting transition (transition 

width ΔTc < 1 K)
•  metal-like electronic response between 400 K 

and 42 K
•  low resistivity value in normal state (corresponds 

to the intrinsic value for defect-free CuO2 plane).
It is therefore shown that samples grown with our 
method are most suitable to reveal the inherent phys-
ical properties leading to understanding the mecha-
nism of high-Tc superconductivity.

3.   Infinite-layer CaCuO2—elemental-resolved 
and atomic-resolution characterization

As already mentioned, CaCuO2 is an essential 
structural part of high-Tc cuprates. In contrast to 
strontium copper oxide (SrCuO2), however, little is 
known about the physical properties of infinite-layer 
CaCuO2 due to the difficulty of synthesis. We synthe-
sized infinite-layer Ca1-xNdxCuO2 thin films using 
MBE. In Ca1-xNdxCuO2, calcium ions (Ca2+ ions) are 
partially substituted with Nd3+ ions (neodymium 
ions) by mimicking Sr0.9La0.1CuO2. For a composi-
tion of x = 0.06, we found traces of superconductivity 

around 10 K [11]. It is important to note that a truly 
superconducting state has not been established. 
Therefore, it is of significant importance to determine 
the differences between superconducting Sr1-xLaxCuO2 
and non-superconducting Ca1-xNdxCuO2 by using 
scanning transmission electron microscopy (STEM) 
combined with electron energy loss spectroscopy 
(EELS). 

STEM is used to visualize atomic positions in mat-
ter. The configuration of our STEM apparatus is 
shown in Fig. 4(a) [12]. Accelerated electrons at 200 
kV are focused on a sample. The scattered electron 
beam contains information on the atomic position. 
This is shown in Fig. 4(b) for Ca0.96Nd0.04CuO2. 
Because the contrast of the original bright-field 
image is inverted, the atomic positions appear bright 
in Fig. 4(b). The observed atomic column arrange-
ments correspond to the infinite-layer structure with 
two-dimensional CuO2 planes. It is evident that 
Ca0.96Nd0.04CuO2 thin films are single crystalline. We 
used EELS to identify the constituent atomic species. 
This is shown in Fig. 4(c). The atomic selectivity of 
EELS enables an atomic column identification that 
exactly matches the infinite-layer phase. 

By measuring the distance between Cu and O 

Fig. 4.   Identification of superconducting state of infinite-layer CaCuO2.
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(dCu-O) from Fig. 4(c), we determined the in-plane 
lattice constant of Ca0.96Nd0.04CuO2 to be 0.386 nm. 
This is 0.001 nm longer than for CaCuO2 [13]. Simi-
lar expansion is found for the Sr0.9La0.1CuO2 system, 
where a substitution of 10% of La results in an expan-
sion of 0.002 nm of the in-plane lattice constant [14]. 
It is intuitively suggested that a critical in-plane lat-
tice constant (dCu-O x 2) for the induction of supercon-
ductivity is to be expected. As the ionic size of Ca2+ 
ions is smaller than that of Sr2+ ions, CaCuO2 has 
shorter dCu-O than for SrCuO2. During the course of 
our study, we found that a higher concentration of Nd 
causes instability of the infinite-layer phase. Conse-
quently, it is not possible to prepare the infinite-layer 
phase of Ca1-xNdxCuO2 with a sufficient amount of 
Nd to induce a superconducting transition. This result 
suggests that lattice constant (the Cu-O bond length 
in the CuO2 plane) engineering is important for the 
induction of superconductivity in cuprates.

4.   Future outlook

Infinite-layer cuprates are very important to under-
stand the physics of high-Tc superconductivity. We 
plan to apply our thin film growth method to further 
understand the mechanism of high-Tc superconduc-
tivity commonly emerging in materials containing 
CaCuO2. This method is currently being extended to 
the synthesis of superlattices containing CaCuO2 
[15].
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