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1.   What is IOWN?

NTT aims to build a prosperous society in which 
people recognize diverse concepts of values. Obtain-
ing information and sensations from another person 
to deepen mutual understanding should contribute 
greatly to achieving such a new and highly diverse 
world. To achieve this world through research and 
development, there will be a need not just to obtain 
large amounts of information through communica-
tion infrastructures that are more massive than ever 
before but also to process that information on a level 
that includes human feelings and subjectivity.

Toward achieving this future vision, NTT has put 
forward the concept of the Innovative Optical and 
Wireless Network (IOWN) as an unprecedented com-
munications platform. The aim is to achieve a net-
work and information-processing platform featuring 
ultralarge-capacity, ultralow-latency, and ultralow-
power consumption capabilities through innovative 
technologies centered around photonics. NTT has 
started to discuss with various partners toward 
achieving IOWN in 2030. 

IOWN consists of three key elements: the All-Pho-
tonics Network (APN), which introduces photonics-
based technologies throughout the network even as 
far as user’s terminals in an end-to-end manner; Cog-
nitive Foundation®, which centralizes management, 

operation, deployment, configuration, and interlink-
ing of information and communication technology 
resources in different devices such as edge comput-
ers, network services, and user equipment, all from 
the cloud; and Digital Twin Computing as a new 
computing paradigm that combines many items of 
digital information representing the real world and 
simulates different forms of interaction between 
objects and humans in cyberspace. Each of these ele-
ments targets a different layer, but in combination, 
they can achieve a new generation of networks and 
information processing.

2.   Importance of the APN

Among the above three elements, the APN is the 
foundation of new optical communications and infor-
mation processing. As its most outstanding feature, it 
is aimed at achieving an information-processing 
infrastructure with low-power consumption and high-
speed information transmission through a transition 
from conventional electronics to photonics (Fig. 1). 
The target power consumption is to increase power 
efficiency by 100 times through the introduction of 
the photonics-electronics convergence technologies 
described below. The target transmission capacity, 
meanwhile, is a 125-fold increase made possible by, 
for example, the development of multicore fiber that 
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accommodates many cores within a single optical 
fiber and the development of a coherent optical sub-
assembly. Furthermore, the target end-to-end delay is 
1/200 of the current level by, for instance, transmit-
ting data in uncompressed form in the case of applica-
tions that cannot allow for any delay.  

3.   Examples of diversity and application 
through the APN

When the APN is achieved, we can expect various 
new scenarios. Due to the limited bandwidth of a cur-
rent network, the amount of data in information to be 
transmitted has been purposely reduced using a tech-
nique such as sampling, quantization, and data com-
pression when analog data are converted to digital 
data. In contrast, the dramatic leap in transmission 
capacity in the APN will make it possible to send and 
receive information with high resolution and a high 
sampling rate, which is faithfully closer to the origi-
nal signal. Furthermore, if data that cannot be per-
ceived by humans, such as a bee’s sense of sight, 
dog’s sense of smell, or bat’s sense of hearing, are 
maintained and exchanged without data compression, 
it should be possible to greatly extend the five human 
senses and create a society that enhances the human 
capability of empathizing with others. 

If different optical wavelengths were to be allocated 
to each different function and service in optical fiber 
transmission, it would be possible to transmit multi-
ple streams of information simultaneously with low 

latency. For example, interactive exchanges between 
people with no delay could take place while transmit-
ting high-definition images over multiple channels. 
As a result, applications with critical requirements for 
communications quality, such as remote surgery and 
mobility as a service, could be made practical.

4.   What are photonics-electronics 
convergence technologies?

To successfully achieve the APN, we should intro-
duce photonics-electronics convergence technolo-
gies, which combine electronics and photonics tech-
nologies in the signal processing section of a proces-
sor chip. This extends the role of photonics, which 
has conventionally been used for long-distance and 
medium-distance transmission such as in intercon-
nects within datacenters. 

NTT laboratories achieved a milestone in the devel-
opment of photonics-electronics convergence tech-
nologies by fabricating an optoelectronic conversion 
device that operates on the world’s smallest amount 
of consumed energy. This achievement was published 
in the British scientific journal Nature Photonics on 
April 15, 2019 [1]. Technology for integrating light 
with part of an electronic circuit has been investigated 
for over 20 years, but large device size and power 
consumption prevented this technology from becom-
ing practical. The technology presented by Nozaki et 
al. [1] succeeded in cutting power consumption by 
94% compared with current technology. 

Fig. 1.   APN performance targets.
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The roadmap for photonics-electronics conver-
gence technologies is shown in Fig. 2. The first step 
will be to fabricate a structure that integrates circuits 
using silicon photonics with fibers and analog inte-
grated circuits (ICs) and achieve ultrahigh-speed con-
nections with peripheral circuits outside the chip 
(Step 1). The next step will be to directly interconnect 
chips by ultrashort optical wiring to improve infor-
mation processing performance (Step 2). The last 
step will be to lower power consumption by intercon-
necting cores within a chip by optical wiring and 
applying optical transistors. We also aim to achieve 
arithmetic processing instantly only in the light 
propagation time of the optical circuit by using opti-
cal pass gate technology, which make maximum use 
of optical characteristics (Step 3).

5.   Content of feature articles

The Feature Articles in this issue take up photonics-
electronics convergence technologies toward the 
APN at the NTT Science and Core Technology Labo-
ratory Group. They will introduce the above steps: 
Step 1 achieving ultrasmall optical transmit/receive 

circuits using silicon photonics technology [2], Step 
2 targeting high-density, low-power optical intercon-
nections [3], and Step 3 focusing on optoelectronic 
conversion devices and optical pass gate circuits 
using nanophotonics technology [4]. 
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Fig. 2.   Roadmap of photonics-electronics convergence technologies.
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