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1.   Optical technology: from communication 
to processing

Optical technology is currently the driving force 
behind large-capacity information transmission 
including long-haul optical fiber communication and 
inter-server communication in datacenters. By exten-
sion, progress in optical communication for shorter 
distances can be considered but will ultimately mean 
optical networking on a computer chip and informa-
tion processing based directly on light. Developing 
an optical computer has been one of the major goals 
of researchers in the field of optics, but the mature 
complementary metal-oxide semiconductor (CMOS) 
electronic circuit technology has prevented any 
meaning from being found in using light in comput-
ing. However, CMOS-based nano-fabrication and 
circuit integration are gradually approaching their 
limits, so expectations are increasing for information 
processing using the high-speed properties of light 
[1]. These expectations are being boosted by progress 
in miniature and energy-saving optical device and 
circuit technology made possible by fine-processing 
technology called nanophotonics. Recent advances in 
silicon photonics technology are also generating 

strong synergy with nanophotonics, and the imple-
mentation of a large-scale optical circuit in a compact 
space is expanding the opportunities for photonic 
computing research.

Though it is generally difficult to carry out various 
types of information processing solely with optical 
circuits, importance is being given to an accelerator 
that can accelerate specific processing by combining 
optical circuits with the parallel digital  processor and 
large-capacity memory of CMOS electronics and 
enabling optical circuits to carry out high-speed-spe-
cific processing applicable to light [2]. In particular, 
the value of using light has been reevaluated recently 
as extending beyond digital processing to include 
analog processing as in machine learning and pho-
tonic microwave-signal processing, and an opto-
electronic integrated accelerator that links CMOS 
electronics and nanophotonics has begun to take 
form.

The following introduces a low-latency optical 
pass-gate circuit, opto-electronic converters, and an 
optical nonlinear device as three key components 
deemed essential to developing an opto-electronic 
integrated accelerator (Fig. 1).
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2.   Low-latency optical pass-gate circuit

The barrier to the continuation of Moore’s law in 
CMOS electronic circuits (empirical rule stating that 
performance improves due to finer processing and 
greater integration) is the increase in signal delay and 
heat generation as a result of resistance and capaci-
tance of transistors and metal wiring. In electronic 
circuits, digital logic operations, such as AND-OR-
INVERT logic, are carried out by cascaded connec-
tion of logic gates. A subsequent gate waits for the 
signal output from a prior gate so that the time delay 
to obtain the calculation result increases proportion-
ally to the number of gate stages. In addition, increas-
ing the signal bit rate increases heat generation due to 
an increase in the movement of free electrons in 
metal. As a consequence, the signal bit rate of CMOS 
electronics for computing that requires low power 
consumption has generally been held to several giga-
hertz. For these reasons, the current situation is that, 
while processing capacity (throughput) can be 
increased through further increases in CMOS fine 
processing and integration, processing delay (laten-
cy) is hitting a ceiling.

As shown in Fig. 2, an optical pass-gate circuit 
consists of the integration of optical switches that 
switch optical transmission paths. In the example 
shown in Fig. 2(a), calculation results are output by 

triggering Mach-Zehnder interferometer optical 
switches* at the same time by signals from the elec-
tronic circuit and transmitting light along the selected 
paths as light beams interfere with each other. There 
is no power loss or heat generation due to resistance, 
as in the case of electronic circuits, and calculations 
are carried out through the interference of light, 
which opens the door to low-energy and low-latency 
processing. We can take as an example a full-adder 
circuit that inputs digital signals (“1” and “0” binary 
signals). The calculation of the carry signal from 
least-significant bit to most-significant bit constitutes 
the adder’s critical path that determines total delay. 
However, carrying out such processing using optical 
pass-gates is expected to reduce delay compared with 
that of electronic circuits [3]. Therefore, optical pass-
gates should be applicable to other digital operations 
including basic arithmetic operations.

In addition to digital processing, progress is also 
being made in analog processing (carried out with 
continuous values). In particular, there are high 

Fig. 1.   Conceptual schematic of an opto-electronic integrated accelerator.
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* Mach-Zehnder interferometer optical switch: A switch that splits 
light into two beams and applies voltage to one, thereby changing 
the refractive index of that waveguide and changing the phase of 
light. It then determines the light output by having the two light 
beams interfere with each other (see Fig. 2). Digital processing 
determines the output ratio to be either 0/1 or 1/0, while analog 
processing results in a continuous output ratio from 0 to 1.
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expectations for microwave photonics technology to 
convert microwave signals used in wireless commu-
nications to light, execute processing that requires 
high spectral resolution and temporal resolution (fil-
tering, waveform control, dispersion control, etc.) in 
the optical domain, and output the results again as 
microwave signals (Fig. 2(b)) [4]. At the same time, 
research on optical neural networks is becoming 
quite active worldwide along with advances in deep 
learning and other artificial intelligence technologies. 
At the core of this analog processing is vector-matrix 
multiplication (VMM), but its calculation cost has 
been a bottleneck in CMOS digital circuits. On the 
other hand, a pass-gate circuit based on light interface 
can be used to physically implement VMM, so a solu-
tion to these problems is expected [5]. The possibility 
exists of achieving low-latency inference by combin-
ing this optical pass-gate circuit with an opto-elec-
tronic converter and optical nonlinear device, as 

described below, to configure opto-electronic neural 
network integration (Fig. 2(c)).

3.   Opto-electronic converters (interface between 
optical and electronic circuits)

A major issue in integrating CMOS and optical 
circuits is developing a high-density opto-electronic 
interface featuring a miniature and energy-saving 
electrical-to-optical (E-O) converter, i.e. an electro-
optic modulator (EOM), and optical-to-electrical 
(O-E) converter, i.e. a photodetector (PD). We have 
been developing such converters using nanostruc-
tures called photonic crystals (Fig. 3), which are 
periodic structures formed in semiconductors. They 
can be used as ultrasmall optical waveguides and 
optical resonators by forming periodic airholes with 
diameters of ~200 nm on a thin semiconductor plate 
and arranging their layout. At NTT, we developed 

Fig. 2.    Example of optical pass-gate circuits: (a) optical digital logic processing, (b) optical microwave processing, (c) optical 
neural network.
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functional devices such as optical switches, optical 
memory, and laser sources and demonstrated record-
low energy operation. We also demonstrated E-O and 
O-E converters, i.e., a nanophotonic EOM and PD, as 
shown in Figs. 3(a) and (b), and succeeded in dra-
matically reducing the size and energy consumption 
of these converters compared with those of conven-
tional ones [6]. 

For E-O/O-E converters, the low electrical capaci-
tance can be an important figure of merit. As shown 
in Fig. 3(c), the capacitance of a single CMOS tran-
sistor is less than one femtofarad (fF), whereas that of 
conventional E-O/O-E converters is generally large, 
i.e., 10 fF or greater. This requires high energy con-
sumption in proportion to the large capacitance, cre-
ating a bottleneck. On the other hand, our converters 
can reduce capacitance to less than 1 fF, the same as 

that of CMOS transistors. Such a capacitance reduc-
tion is of major significance. As shown in Fig. 3(d), 
optical communication based on conventional 
E-O/O-E converters requires multiple amplifier stag-
es to generate a sufficient voltage signal, which 
increases power consumption and device area. In 
contrast, the electrical energy required for logic 
operations in CMOS transistors can be sufficient to 
drive our low-capacitance converters, enabling seam-
less opto-electronic integration requiring no amplifi-
ers. We therefore expect our converters to be used for 
configuring dense optical networks either between or 
within CMOS chips based on simple optical trans-
ceiver circuits with a strong energy-saving effect and 
for even optical-signal processing within communi-
cation. Going forward, the key to these advances is 
integrating CMOS and opto-electronic converters 

Fig. 3.    Performances of opto-electronic converters using photonic crystals: (a) nanophotonic EOM, (b) nanophotonic PD, 
(c) comparison of device capacitance, and (d) simplification of optical communication circuit with low-capacitance 
opto-electronic converters.
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while maintaining low capacitance and developing 
opto-electronic interfaces toward practical comput-
ing applications.

4.   Optical nonlinear device (optical transistor)

Nonlinear operations such as signal switching and 
amplification, as in electrical transistors, play an 
important role in optical circuits. However, though 
light is particularly good at linear signal processing 
based on light interference, nonlinear signal process-
ing generally requires strong light-matter interaction, 
which in turn requires high optical energy. To over-
come this, we fabricated an O-E-O converter by inte-
grating the nanophotonic PD and EOM described 
above, and developed an energy-saving optical non-
linear device (Fig. 4). The optical input signal to the 
PD is converted to current that is then converted to a 
voltage via load resistance (24 kΩ). This voltage, in 
turn, drives the EOM so that the input signal wave-
form is transferred to another light. This results in 
nonlinear signal transfer at 10 Gbit/s. With this opera-
tion, the optical output power from the EOM is at 
least two times greater than that of the optical input 
power at the PD. It can be said that we have achieved 
an optical transistor producing an optical signal gain 
in the same manner that an electrical transistor pro-
duces an electrical signal gain [7].

The electrical capacitance of this opto-electronic 
integrated device is extremely small at 2 fF, and such 
integration that maintains ultralow capacitance is the 

world’s first. Current O-E-O converters suffer from 
large capacitance, making energy consumption sub-
stantially high, but our low-capacitance device 
reduces this to several fJ/bit, which is less than 1/100 
that of current devices. The fact that this device 
exhibits optical signal gain should enable multi-stage 
transfer of optical signals. Thus, it should be possible 
to connect and increase the scale of optical pass-gate 
circuits. We can also envision its applications includ-
ing its use as a nonlinear optical neuron in the optical 
neural network shown in Fig. 2. 

5.   Conclusion

There are options to maximize the superior features 
of light and obtain a level of performance that exceeds 
that of electronic circuits. The ability of multiplexing 
optical information by wavelength, space, and time to 
increase the dimensions of processing provides a sig-
nificant advantage over electronic processing. Practi-
cally, we need an opto-electronic co-design that takes 
into account opto-electronic converters, analog-to-
digital converters, and the latency and energy effi-
ciency within electronic circuits. An approximate 
computing design that balances accuracy and com-
puting cost is becoming increasingly important [8]. 
Beyond the device technology (component level) 
introduced in this article, a broader perspective 
(architecture level) is required to discover the specific 
form that opto-electronic integrated computing 
should take. 

Fig. 4.   Optical nonlinear device (optical transistor): (a) photo of device, (b) operation principle.
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