
NTT Technical Review 58Vol. 19 No. 2 Feb. 2021

1. Importance of software testing

The software-development process is summarized
in Fig. 1. In this process, software defects that could
not be removed during testing are released in that
state to the user, so testing is a critical process essen-
tial to software quality assurance. Yet, attempting to
do all testing manually is extremely costly. Users’
needs have been changing rapidly, and software and
hardware that constitute the operating environment
have likewise been evolving at a rapid pace. This
makes it necessary to revise software quickly as the
need arises and release software updates frequently at
short intervals. However, to conduct software releas-
es frequently while maintaining a certain level of
quality, testing cannot be limited to just the new addi-
tions even in a small-scale update. It is also necessary

to conduct regression testing with respect to all exist-
ing features at every release to check whether they
have been adversely affected by new features or a
new operating environment. This need can also incur
high costs. NTT Software Innovation Center seeks to
revolutionize testing—the cornerstone of quality,
cost, and delivery in software development—and
achieve a quantum leap in productivity in the soft-
ware-development process.

2. Current state of software testing

The purpose of software testing includes checking
that the software is behaving normally and reducing
the number of software defects. As shown in Fig. 2,
the testing process can be broadly divided into five
tasks: test planning, test design, test execution, test
management, and test reporting. Test planning
involves decisions on test period, resource allocation,
etc. based on an overall development plan. Test
design involves identifying test variations that should
be carried out, exhaustively designing test cases, and
for each test case, refining a specific procedure for
executing the test and creating a script for automatic
execution. Next, test execution involves providing

Test Automation Technology for
Analyzing Test-activity Data and
Detecting Bugs
Haruto Tanno, Hiroyuki Kirinuki, Yu Adachi,
Morihide Oinuma, and Tatsuya Muramoto

Abstract
There is a growing demand for the early release of software while holding down costs. Software test-

ing, which makes up a large portion of overall development costs and is essential to ensuring a certain
level of quality in software, can be viewed as the cornerstone of quality, cost, and delivery in the develop-
ment process. This article describes technology undertaken by NTT Software Innovation Center for
achieving a dramatic leap in testing efficiency and discusses the future outlook for this technology.

Keywords: software testing, exploratory testing, test script

Feature Articles: Future Information-processing
Infrastructure for Enabling Data-centric Society

Fig. 1. Software-development process.

Design Construct Test
Define
require-
ments

Feature Articles

59NTT Technical Review Vol. 19 No. 2 Feb. 2021

input data for each test case, running the software,
and checking whether the software is behaving as
expected. Test management involves managing test-
execution conditions as needed and revising the plan
if conditions warrant. Then, once all tests have been
completed, the final task is to compile test results and
issue a test report, thereby completing overall testing.
Among these tasks, test design and test execution
play major roles in the testing process.

The first issue in traditional exhaustive testing is the
high costs incurred in both design and execution.
Pursuing completeness in testing with the aim of
improving quality can take a massive amount of time
while extending the period until release. Moreover,
evaluating completeness is inherently difficult. For
example, using specifications as a standard for com-
pleteness depends heavily on the quality of those
specifications, and the content of the test itself cannot
be evaluated on the basis of code coverage. In addi-
tion, simply clearing certain index values does not
mean that the degree of quality improvement is well
understood.

The second issue is the costs incurred in automating
regression testing, which is required when issuing
releases frequently in short cycles. Although many
frameworks and libraries, such as JUnit and Seleni-
um, are currently available for automatically execut-
ing tests, scripts must be created for such automatic
execution, which can be very time consuming. To
make it worse, a completed script does not mean that
no more work is needed since it must be revised
together with any revisions made to the software tar-
geted for testing. This type of maintenance work is
also labor intensive.

3. World we aim for

To achieve ultra-high-speed development that can
handle increasingly diverse and vague business
requirements and rapidly evolving businesses, the
approach taken by NTT Software Innovation Center

is to establish artificial intelligence (AI) development
technology that can substitute or even excel in some
human work and to develop software through human-
AI cooperation. The world we aim for to achieve such
ultra-high-speed development is shown in Fig. 3. In
our approach, instead of haphazardly pursuing com-
pleteness, we select the locations that should be tested
and concentrate our efforts there. In addition, we
make successive judgments as to what locations to
select and concentrate on by collecting and analyzing
test-execution conditions and results. This approach
solves the problems surrounding traditional exhaus-
tive testing and achieves a quantum leap in testing
efficiency. Furthermore, by using test-activity data
accumulated over time and automatically generating
easy-to-maintain test scripts, it has become relatively
easy to automate regression testing, which makes for
prompt releases after making software updates.

The NTT Group develops many business applica-
tions that use web applications as front ends and tests
these applications through integration testing. In this
article, we describe LatteArt as a technology target-
ing integration testing, which has a great need for
efficiency improvements.

4. LatteArt: Technology for analyzing
test-activity data and detecting bugs

A business application has many use-case scenari-
os, features, and screens, and each screen may have
many combinations of input patterns. This incurs
high costs in traditional exhaustive testing. While
there are tools that support test design through auto-
matic design of exhaustive testing on the basis of
some type of model (e.g., software design model),
executing all required tests is still labor intensive,
thereby placing a limit on the degree to which overall
testing can be made more efficient. In addition, auto-
mating the testing of web applications requires the
creation of test scripts for executing screen operations
automatically. In addition to the fact that the manual
creation of such test scripts drives up costs, a test
script must be revised whenever the associated web
application is updated, which is also costly from a
maintenance point of view. In this regard, there are
capture & replay tools (e.g., SeleniumIDE) that can
be used to create scripts even without advanced skills,
but creating scripts in this manner still requires work.
Moreover, because test scripts recorded by capture &
replay are not modularized, they suffer from low
maintainability.

To solve these problems, we developed a technology

Fig. 2. Testing process.

Test
planning

Test design
Test

execution

Test management

Test
reporting

Feature Articles

NTT Technical Review 60Vol. 19 No. 2 Feb. 2021

called LatteArt for analyzing test-activity data and
detecting bugs. LatteArt has the following features.
(1) Collection of test-activity data

This step involves automatically collecting test-
activity data consisting of the tester’s operation log
and web-application screenshots as well as test objec-
tives input by the tester while executing tests, discov-
ered bugs, findings, etc.
(2) Analysis of test-activity data

In this step, the test manager gives instructions on
test content at a general level in the manner of com-
bining the test viewpoint and test-target feature with-
out creating a detailed test [1, 2, 3]. The tester then
conducts tests based on those instructions. In addi-
tion, test-activity data that have been automatically
collected are analyzed and visualized using a variety
of data models, enabling the test manager to deter-
mine if the test is sufficient or give instructions for
additional tests. For example, the models shown in
the sequence diagram and screen-transition diagram
in Figs. 4 and 5, respectively, can visualize test-
activity data. Furthermore, as shown in Fig. 6, the test
manager can focus on a specific screen transition

using the screen-transition diagram to check a list of
input patterns that occur when making that screen
transition. Selecting locations that should be tested
and concentrating on those locations in this manner
facilitates testing that can detect bugs with good effi-
ciency.
(3) Application of test-activity data

Test-activity data can be used to automatically gen-
erate test scripts that modularize screen-element loca-
tors based on the concept of page-object patterns.
This approach simplifies the maintenance of test
scripts even when revising an application and enables
regression testing to be automated, eliminating the
labor that would otherwise be required.

5. Achievements and future outlook

We aim to become a leader in test technology based
on the analysis of test-activity data and change the
conventional way of doing testing in the system inte-
gration industry. We are currently evaluating the
application of LatteArt through joint experiments
with NTT operating companies and are receiving

Fig. 3. World we aim for.

CRUD: create, read, update, delete
DB: database

YesYesYYYYYYeeeesYYYYYYeeesYYYYYYeeesYYYYYeeeesYYYYYYeeees

Data analysis

Automatic collection of tester’s operations and results

Screen-transition diagram, screen capture,
CRUD, operation log, etc.

Test coverage, bug generation conditions, etc.

TesterTest manager

<Test sufficiency judgment>

Accumulated
test-activity

data

Test automation using data

Testing instructions based on data analysis

Test viewpoints

Function

Function
A

Function
B

Function
1

Target

Target Target

Non-
target

· ·

:

1

2

Function
2

Additional testing
instructions Testing to detect bugs based on analysis results

Testing
instructions

Data
collection

Viewpoint
Screen transition

1

57%

DB access

:

2 Coverage

Functionality

Screen A

Screen B

Screen C

Test script generation

Function Viewpoint 1

Function A

Function B

:

Viewpoint 2

Reservation form

Number of nights
1 night from Nov. 10, 2020

Number of people
1

Breakfast buffet
NoYes

Plans

Your name

¥1000/person

Check-in from afternoon

Plan details

Discount sightseeing

C R U D

Next

Feature Articles

61NTT Technical Review Vol. 19 No. 2 Feb. 2021

positive responses from development sites. We have
also received high evaluations for LatteArt through
presentations at academic societies in Japan and have
received a number of awards for LatteArt.

In addition to the analysis and visualization of test-
activity data and the automatic generation of test
scripts, as introduced in this article, we can consider
a variety of research directions in the use of test-
activity data automatically collected and stored using
LatteArt. The following are examples of these direc-
tions.

•	 	Test	recommendations:	A	test	with	a	high	prob-
ability of discovering bugs can be automatically
recommended by analyzing which type of test
was conducted by a tester when he/she discov-
ered bugs.

•	 	Test	education:	Test-activity	data	of	experienced	
testers can be used as educational material. In
addition, analyzing and comparing test-activity
data of multiple testers should make it possible to
measure testing skills.

•	 	Application	 to	 areas	 other	 than	 testing:	 Test-
activity data could be used to restore the specifi-
cations of software targeted for testing, auto-
matically generate manuals, etc.

Going forward, our goal is to create an ecosystem
for revolutionizing testing and software development
centered around LatteArt. We will achieve this by
collaborating with companies and universities out-

side the NTT Group to incorporate various types of
industrial and academic knowledge in our research.
For this reason, we plan to study the conversion of
LatteArt to open-source software and work on widely
disseminating this technology. We are committed to
making steady progress in researching and develop-
ing this technology based on feedback from develop-
ment sites. Our ultimate goal is to create a world in
which AI can conduct testing automatically by col-
lecting massive amounts of test-activity data.

References

[1] I. Kumagawa, A. Mineo, H. Tanno, H. Kirinuki, and T. Kurabayashi,
“SONAR Testing, New Testing Method that Ensures Both Efficiency
and Objectivity,” Software Quality Symposium 2019, Tokyo, Japan,
Sept. 2019 (in Japanese).

[2] H. Kirinuki, T. Kurabayashi, H. Tanno, and I. Kumagawa, “Poster:
SONAR Testing – Novel Testing Approach Based on Operation
Recording and Visualization,” IEEE International Conference on
Software Testing, Verification and Validation (ICST) 2020, pp. 410–
413, Porto, Portugal, Oct. 2020.

[3] H. Kirinuki, T. Kurabayashi, H. Tanno, I. Kumagawa, and K. Nagata,
“Novel Testing Approach Based on Exploratory Testing and Opera-
tion Recording,” IEICE Tech. Rep., Vol. 119, No. 56, KBSE2019-7,
pp. 43–48, May 2019 (in Japanese).

Fig. 4. Sequence diagram.

Screen

Test objective

Bug discovered while testing

Screen transition

Notice occurring while testing

Input reservation
information

Check
reservation

details

Complete
reservation

(2) Test normal system

(4) click: Next

(13) click: Next

(19) click: Next

(6) click: OK

(8) click: Return

(16) click: Return

(21) click: Return

(10) click: Return

(12) Registered with past date

Strange error
message

Reservation
error

Slow response

Fig. 5. Screen-transition diagram.

Screen

Screen transition

Input reservation
information

Check reservation
details

Complete
reservation

Reservation
error

click: Next click: Nextclick: Return click: Return

click: Returnclick: OK

Fig. 6. Input patterns during screen transition.

Input values in
2nd transition

Input values in
1st transition

Selected screen
transition Input reservation

information
Reservation

error

Element
name

Input values 1st

Taro Suzuki Hanako Sato

2nd

Feature Articles

NTT Technical Review 62Vol. 19 No. 2 Feb. 2021

Haruto Tanno
Senior Research Engineer, Software Engineer-

ing Project, NTT Software Innovation Center.
He received an M.E. in 2009 and Dr. Eng. in

2020 from the University of Electro-Communi-
cations, Tokyo. He joined NTT in 2009. His
research interests include software testing and
debugging. He is a member of the Information
Processing Society of Japan (IPSJ).

Morihide Oinuma
Senior Research Engineer, Software Engineer-

ing Project, NTT Software Innovation Center.
He received a B.E. and M.E. in electrical engi-

neering from Keio University, Kanagawa, in
1984 and 1986. He joined NTT in 1986 and his
current research interest is in software engineer-
ing. He is a member of IPSJ.

Yu Adachi
Researcher Engineer, Software Engineering

Project, NTT Software Innovation Center.
He received an M.E. from the University of

Electro-Communications in 2009 and joined
NTT the same year. His research interest is in
software engineering.

Hiroyuki Kirinuki
Researcher, Software Engineering Project,

NTT Software Innovation Center.
He received an M.E. from Osaka University in

2015 and joined NTT the same year. His research
interests include software testing and empirical
software engineering. He is a member of IPSJ.

Tatsuya Muramoto
Senior Research Engineer, Supervisor, Soft-

ware Engineering Project, NTT Software Inno-
vation Center.

He received an M.E. from University of Tsu-
kuba in 1996 and joined NTT the same year. His
current research interest is in software engineer-
ing.

