
NTT Technical Review 65Vol. 19 No. 7 July 2021

1. Memory-centric architecture

Central processing unit (CPU) performance has
evolved rapidly, as Moore’s Law states that semicon-
ductor integration will double every 18 months. Com-
pared with this CPU evolution, memory and storage
networks have evolved slowly. Therefore, most cur-
rent software is designed on the premise of high-
performance CPUs and other low-speed devices and
the policy of shortening the processing time of other
devices by conducting as many calculations on the
CPU as possible.

When executing storage input/output (I/O), for
example, the CPU efficiently adjusts the unit size of
the I/O and request amount for the I/O target data
stored in the memory. For processing that requires
multiple accelerators, the software on the CPU con-
trols the accelerators. Such a processing model, in
which the CPU intervenes in processing, is called a
CPU-centric computing model (Fig. 1(a)).

As a general software design, the CPU is designed
to mediate processing. However, the growth of CPU
core performance has slowed, which is said to be the
limit of Moore’s Law. Non-volatile memory, which is
a high-speed storage, and accelerators, such as field-
programmable gate arrays (FPGAs) and graphics
processing units (GPUs), are rapidly evolving. A new
software-processing model for improving the perfor-
mance of various accelerators is also becoming more

important.
Therefore, we are investigating a memory-centric

architecture that enables efficient cooperation
between various accelerators via the main memory.
This architecture focuses on the main memory where
an accelerator starts processing, enabling efficient
data exchange via the main memory when accelera-
tors are linked.

Memory-centric architecture is a data-exchange
model in which the sender accelerator inputs data into
the main memory (shared memory) and the receiver
accelerator autonomously acquires and calculates the
data. Taking the example of receiving data from
another node with a network interface card (NIC) and
processing it with an FPGA, in the CPU-centric com-
puting model, the CPU controls the reception of the
NIC and the execution of processing to the FPGA.
However, memory-centric architecture requires only
two minimum processes, NIC network-reception pro-
cessing and FPGA-arithmetic processing, so CPU
resource consumption and processing-time reduction
to mediate the processing can be expected (Fig. 1(b)).

When multiple accelerators execute parallel pro-
cessing using the data input to the memory, the
sender accelerator only needs to be placed once in the
shared memory area, which is a more efficient pro-
cessing model (Fig. 1(b)).

A concept close to memory-centric architecture is
Hewlett Packard Enterprise (HPE)’s Memory Driven

Memory-centric Architecture for
Disaggregated Computers
Teruaki Ishizaki and Yoshiro Yamabe

Abstract
At first glance, most of the technical components of a disaggregated computer seem to be hardware.

However, simply using current software cannot enable efficient computing even if each hardware
resource is connected directly with optical fibers. This article introduces the problems of current soft-
ware that has evolved on the premise of high-speed central processing units and describes memory-
centric architecture as a new data-exchange model for a disaggregated computer.

Keywords: disaggregated computer, memory-centric architecture, shared memory

Feature Articles: Disaggregated Computing Will
Change the World

Feature Articles

66NTT Technical Review Vol. 19 No. 7 July 2021

Computing (MDC) [1]. MDC is a concept model
based on hardware architecture, such as a configura-
tion in which a large memory pool is placed in the
center of all processors. Memory-centric architec-
ture, on the other hand, focuses on data control by
software for exchanging data between accelerators
via memory.

2. Evaluation on the effectiveness of
memory-centric architecture

We evaluated the effectiveness of memory-centric
architecture by using Sparkle [2, 3], which is an
extension of Apache Spark (open source software for
distributed data processing), as current software that
is close to the concept of efficient data exchange via
shared memory.

Apache Spark consists of a map phase that executes
data processing in each worker process, shuffle phase
that distributes the processing results executed in the
worker process to the required processes, and reduce
phase that executes operations on the basis of the
results collected from each worker process. The
shuffle phase is a process for exchanging a large
amount of data by network communication using the
TCP/IP (Transmission Control Protocol/Internet Pro-
tocol) between worker processes distributed over
multiple nodes. Therefore, the shuffle phase’s cost is
very high in terms of CPU-processing delay related to
network communication and CPU resource con-
sumption. Sparkle is an extension that enables shuffle
processing via shared memory for solving this prob-
lem.

Sparkle is software developed by HPE for MDC

and is open source. However, its further development
was suspended in 2016 when our evaluation study
started, so we had to make some bug fixes to evaluate
it [4].

Figure 2 is a comparison of Apache Spark (Fig.
2(a)) and Sparkle (Fig. 2(b)) data-exchange models
assuming that multiple worker processes are running
on the same server. Since connections are created
between processes that exchange data, a large num-
ber of connections will be created due to the increase
in worker processes as the processing scale increases.
The process on the receiving side can refer to the data
by receiving data through the network. However, to
carry out network processing, it is necessary to exe-
cute data operations for transfer (protocol stack pro-
cessing, memory copy to kernel space, etc.) on the
CPU on both the transmitting and receiving sides.
Therefore, this process increases delay. Since Sparkle
can be referenced by other processes by arranging the
data on the shared memory by the sending process, it
is possible for the receiving process to acquire the
data by referring to the memory area required. In
other words, each process simply places the calcula-
tion result in the shared memory, and all processes
can refer to the data without the CPU executing data
operations for data transfer only, enabling efficient
transmission and reception.

Graphs of Apache Spark and Sparkle performance
test results are shown in Figs. 3 and 4. Figure 3 shows
the performance comparison results of five basic pro-
cesses including shuffle processing. The range of
performance improvement differed since the ratio of
shuffle processing to the entire processing differed
depending on the processing. In particular, Sparkle

Fig. 1. Comparison of processing flow.

(a) CPU centric (b) Memory centric

CPU CPU mediates
processing.

Memory

FPGA

FPGA

NIC

CPU
Memory mediates

processing.

Processing branches
from memory.

Memory

FPGA

FPGA

NIC

Feature Articles

NTT Technical Review 67Vol. 19 No. 7 July 2021

was about 6 times faster than Apache Spark in the
case of ReduceBy, resulting in a significant perfor-
mance improvement. Figure 4 shows the results of
comparing the streaming processing performance
using Spark Streaming. In this measurement, Sparkle
had about twice the performance improvement com-
pared with Apache Spark, and is expected to be effec-
tive for processing with strict delay requirements.

It was reconfirmed that the construction of a data-
exchange model using shared memory enables effi-
cient data exchange and reduction in delay, but there

are issues in its construction. One of the biggest
issues is the management of shared memory. It is
common for the same file to be mapped by multiple
processes when using shared memory, and it is neces-
sary to use general C language pointer access to
access the shared memory area. Although this can be
described in general C language notation, memory
management, such as access control of the shared
memory area between multiple processes, free area
management, and allocation, is not supported. There-
fore, each application programmer needs to implement

Fig. 2. Difference in data-exchange models.

(a) Apache Spark (network processing within localhost)

NW: network

(b) Sparkle (data exchange via shared memory)

It can be referenced from other processes by
executing the network processing by the CPU.

Can be accessed from other processes
simply by storing the processing resultData transfer (refer kernel memory)

A B C A B C

A A

Process 2Process 1
Data

processing

Read data

Memory

NW post-
processing
and store

NW post-
processing
and store

NW post-
processing
and store

A

B

Process 3

Read data

B

C

Process 4 Process 2Process 1 Process 3 Process 4

Read data Read data
(refer memory)

Read data
(refer memory)

Read data
(refer memory)

Shared memoryC

B C

Data
processing

Data
processing

Data
processing

Data
processing

Data
processing

Data
processing

Data
processing

Store processing
result data
Store processing
result data

Memory Memory Memory

Read and NW
pre-processing
Read and NW
pre-processing

Store processing
result data
Store processing
result data

Fig. 3. Comparison of micro-benchmark result.

T
im

e
(s

)

GroupBy Join PartitonBy ReduceBy SortBy

Apache Spark Sparkle

17.379

7.284

24.521

18.234

8.454

4.163

36.578

6.504

25.467

7.932

40

35

30

25

20

15

10

5

0

Feature Articles

68NTT Technical Review Vol. 19 No. 7 July 2021

their own memory management function to prevent
data overwriting and double allocation of the memory
area. The shared memory can be also used within a
single server. To execute distributed processing
across multiple servers, it is necessary to expand the
function to enable such processing.

Research on software that does not impair the low
latency of shared memory and that programmers can
easily benefit from has become an important research
subject for achieving memory centricity.

3. Conclusion

From the evaluation results of Sparkle, the effec-
tiveness of using a data-exchange model via shared
memory for a CPU was confirmed. As a study on
memory-centric architecture, we will consider
expanding this data-exchange model via shared
memory to other accelerators such as FPGAs and
study as a core technology that connects various

hardware processes. Memory-centric architecture is
positioned as an elemental technology required for
disaggregated computers that support IOWN (Inno-
vative Optical and Wireless Network) and is posi-
tioned as a software technology for using computer
resources independently rather than on a server-
chassis basis. By connecting and using accelerators
without using a CPU through software control, we
aim to reduce delay and CPU consumption.

References

[1] K. Keeton, “Memory-driven Computing,” FAST 2017, Santa Clara,
USA, Feb.–Mar. 2017.

[2] M. Kim, J. Li, H. Volos, M. Marwah, A. Ulanov, K. Keeton, J. Tucek,
L. Cherkasova, L. Xu, and P. Fernand, “Sparkle: Optimizing Spark for
Large Memory Machines and Analytics,” arXiv preprint,
arXiv:1708.05746, 2017.

[3] Hewlett Packard/Sparkle on GitHub,
 https://github.com/HewlettPackard/sparkle
[4] Sparkle-plugin on GitHub,
 https://github.com/sparkle-plugin/sparkle

Fig. 4. Comparison of macro-benchmark using Spark Streaming.

T
im

e
(s

)

Apache Spark Sparkle

1.635

0.693

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

https://github.com/HewlettPackard/sparkle
https://github.com/sparkle-plugin/sparkle

Feature Articles

NTT Technical Review 69Vol. 19 No. 7 July 2021

Teruaki Ishizaki
Senior Research Engineer, Distributed Com-

puting Technology Project, NTT Software Inno-
vation Center.

He received a B.E. and M.E. in mechanical and
environmental informatics from Tokyo Institute
of Technology in 2002 and 2004. He joined NTT
Cyber Space Laboratories in 2004 and studied
the Linux Kernel and virtual machine monitor.
From 2010 to 2013, he joined the cloud service
division at NTT Communications and developed
and maintained cloud and distributed storage
services. He is currently studying a persistent
memory programming model, remote direct
memory access (RDMA) programming model,
cloud-native computing, and memory-centric
computing.

Yoshiro Yamabe
Research Engineer, Distributed Computing

Technology Project, NTT Software Innovation
Center.

He received a B.E. and M.E. in information and
communication engineering from the University
of Tokyo in 2014 and 2016. He joined NTT Soft-
ware Innovation Center in 2016 and has studied
an RDMA programming model, shared memory
programming model, and memory-centric com-
puting.

