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1.   Memory-centric architecture

Central processing unit (CPU) performance has 
evolved rapidly, as Moore’s Law states that semicon-
ductor integration will double every 18 months. Com-
pared with this CPU evolution, memory and storage 
networks have evolved slowly. Therefore, most cur-
rent software is designed on the premise of high-
performance CPUs and other low-speed devices and 
the policy of shortening the processing time of other 
devices by conducting as many calculations on the 
CPU as possible.

When executing storage input/output (I/O), for 
example, the CPU efficiently adjusts the unit size of 
the I/O and request amount for the I/O target data 
stored in the memory. For processing that requires 
multiple accelerators, the software on the CPU con-
trols the accelerators. Such a processing model, in 
which the CPU intervenes in processing, is called a 
CPU-centric computing model (Fig. 1(a)).

As a general software design, the CPU is designed 
to mediate processing. However, the growth of CPU 
core performance has slowed, which is said to be the 
limit of Moore’s Law. Non-volatile memory, which is 
a high-speed storage, and accelerators, such as field-
programmable gate arrays (FPGAs) and graphics 
processing units (GPUs), are rapidly evolving. A new 
software-processing model for improving the perfor-
mance of various accelerators is also becoming more 

important.
Therefore, we are investigating a memory-centric 

architecture that enables efficient cooperation 
between various accelerators via the main memory. 
This architecture focuses on the main memory where 
an accelerator starts processing, enabling efficient 
data exchange via the main memory when accelera-
tors are linked.

Memory-centric architecture is a data-exchange 
model in which the sender accelerator inputs data into 
the main memory (shared memory) and the receiver 
accelerator autonomously acquires and calculates the 
data. Taking the example of receiving data from 
another node with a network interface card (NIC) and 
processing it with an FPGA, in the CPU-centric com-
puting model, the CPU controls the reception of the 
NIC and the execution of processing to the FPGA. 
However, memory-centric architecture requires only 
two minimum processes, NIC network-reception pro-
cessing and FPGA-arithmetic processing, so CPU 
resource consumption and processing-time reduction 
to mediate the processing can be expected (Fig. 1(b)).

When multiple accelerators execute parallel pro-
cessing using the data input to the memory, the 
sender accelerator only needs to be placed once in the 
shared memory area, which is a more efficient pro-
cessing model (Fig. 1(b)).

A concept close to memory-centric architecture is 
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Computing (MDC) [1]. MDC is a concept model 
based on hardware architecture, such as a configura-
tion in which a large memory pool is placed in the 
center of all processors. Memory-centric architec-
ture, on the other hand, focuses on data control by 
software for exchanging data between accelerators 
via memory.

2.   Evaluation on the effectiveness of 
memory-centric architecture

We evaluated the effectiveness of memory-centric 
architecture by using Sparkle [2, 3], which is an 
extension of Apache Spark (open source software for 
distributed data processing), as current software that 
is close to the concept of efficient data exchange via 
shared memory.

Apache Spark consists of a map phase that executes 
data processing in each worker process, shuffle phase 
that distributes the processing results executed in the 
worker process to the required processes, and reduce 
phase that executes operations on the basis of the 
results collected from each worker process. The 
shuffle phase is a process for exchanging a large 
amount of data by network communication using the 
TCP/IP (Transmission Control Protocol/Internet Pro-
tocol) between worker processes distributed over 
multiple nodes. Therefore, the shuffle phase’s cost is 
very high in terms of CPU-processing delay related to 
network communication and CPU resource con-
sumption. Sparkle is an extension that enables shuffle 
processing via shared memory for solving this prob-
lem. 

Sparkle is software developed by HPE for MDC 

and is open source. However, its further development 
was suspended in 2016 when our evaluation study 
started, so we had to make some bug fixes to evaluate 
it [4].

Figure 2 is a comparison of Apache Spark (Fig. 
2(a)) and Sparkle (Fig. 2(b)) data-exchange models 
assuming that multiple worker processes are running 
on the same server. Since connections are created 
between processes that exchange data, a large num-
ber of connections will be created due to the increase 
in worker processes as the processing scale increases. 
The process on the receiving side can refer to the data 
by receiving data through the network. However, to 
carry out network processing, it is necessary to exe-
cute data operations for transfer (protocol stack pro-
cessing, memory copy to kernel space, etc.) on the 
CPU on both the transmitting and receiving sides. 
Therefore, this process increases delay. Since Sparkle 
can be referenced by other processes by arranging the 
data on the shared memory by the sending process, it 
is possible for the receiving process to acquire the 
data by referring to the memory area required. In 
other words, each process simply places the calcula-
tion result in the shared memory, and all processes 
can refer to the data without the CPU executing data 
operations for data transfer only, enabling efficient 
transmission and reception.

Graphs of Apache Spark and Sparkle performance 
test results are shown in Figs. 3 and 4. Figure 3 shows 
the performance comparison results of five basic pro-
cesses including shuffle processing. The range of 
performance improvement differed since the ratio of 
shuffle processing to the entire processing differed 
depending on the processing. In particular, Sparkle 

Fig. 1.   Comparison of processing flow.
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was about 6 times faster than Apache Spark in the 
case of ReduceBy, resulting in a significant perfor-
mance improvement. Figure 4 shows the results of 
comparing the streaming processing performance 
using Spark Streaming. In this measurement, Sparkle 
had about twice the performance improvement com-
pared with Apache Spark, and is expected to be effec-
tive for processing with strict delay requirements.

It was reconfirmed that the construction of a data-
exchange model using shared memory enables effi-
cient data exchange and reduction in delay, but there 

are issues in its construction. One of the biggest 
issues is the management of shared memory. It is 
common for the same file to be mapped by multiple 
processes when using shared memory, and it is neces-
sary to use general C language pointer access to 
access the shared memory area. Although this can be 
described in general C language notation, memory 
management, such as access control of the shared 
memory area between multiple processes, free area 
management, and allocation, is not supported. There-
fore, each application programmer needs to implement 

Fig. 2.   Difference in data-exchange models.
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Fig. 3.   Comparison of micro-benchmark result.
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their own memory management function to prevent 
data overwriting and double allocation of the memory 
area. The shared memory can be also used within a 
single server. To execute distributed processing 
across multiple servers, it is necessary to expand the 
function to enable such processing.

Research on software that does not impair the low 
latency of shared memory and that programmers can 
easily benefit from has become an important research 
subject for achieving memory centricity.

3.   Conclusion

From the evaluation results of Sparkle, the effec-
tiveness of using a data-exchange model via shared 
memory for a CPU was confirmed. As a study on 
memory-centric architecture, we will consider 
expanding this data-exchange model via shared 
memory to other accelerators such as FPGAs and 
study as a core technology that connects various 

hardware processes. Memory-centric architecture is 
positioned as an elemental technology required for 
disaggregated computers that support IOWN (Inno-
vative Optical and Wireless Network) and is posi-
tioned as a software technology for using computer 
resources independently rather than on a server-
chassis basis. By connecting and using accelerators 
without using a CPU through software control, we 
aim to reduce delay and CPU consumption.
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Fig. 4.   Comparison of macro-benchmark using Spark Streaming.
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