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1.   Smart city and cyber-physical system

When you hear the term smart city, what kind of 
city comes to mind? According to the definition by 
the Ministry of Land, Infrastructure, Transport and 
Tourism [1], a smart city is “a sustainable city or dis-
trict that is managed to achieve total optimization 
while utilizing new technologies such as information 
and communication technology (ICT) to address the 
various issues facing the city.” The Nomura Research 
Institute’s definition [2] more specifically defines a 
smart city as “one that collects and integrates a vari-
ety of data, such as environmental data, facility 
operation data, consumer attributes, and behavioral 
data, through sensors, cameras, smartphones, and 
other devices installed throughout the city, and uses 
artificial intelligence (AI) to analyze the data, as well 
as remotely controlling facilities and equipment as 
necessary, with the aim of optimizing urban infra-
structure, facilities, and operations, and improving 
convenience and comfort for businesses and consum-
ers.” Both definitions aim to achieve total optimiza-
tion by using ICT technology to manage and operate 

a city. One concept, the goal with which is to achieve 
optimization by processing information from the real 
world, is the cyber-physical system (CPS). As shown 
in Fig. 1, a CPS takes information from the real world 
(physical), passes it to a virtual space (cyber), ana-
lyzes it through computing, then feeds back the 
results of the analysis to the real world to optimize 
real-world operations.

What will happen when reality becomes program-
mable, i.e., the softwarization of reality? In fact, the 
softwarization of reality is already happening every-
where. Take the telephone, for example. In the past, a 
telephone was a box with a handset and a dial, and 
cell phones, which have become smaller and more 
wireless, were initially just terminals to connect 
remote locations. However, the advent of the smart-
phone, a softwarized phone, changed the world. 
Physical buttons became icons on touchscreens, 
which eventually transformed freely into all sorts of 
palm-sized interfaces (phones, calculators, books, 
cameras, etc.). E-books and digital cameras are 
examples of books and cameras that have been soft-
warized. As a result, the static, one-way interface of 
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the past has been transformed into a dynamic, inter-
active one, and the information presented can be 
personalized and recommendations can be made to 
suit the recipient. This yields dramatic improvements 
in convenience and comfort.

Let us return to the topic of smart cities. Yes, a 
smart city is a softwarized city. The building blocks 
of a city had been physical such as concrete buildings, 
metal signs, and transportation systems. In a smart 
city, however, buildings will be smart buildings con-
trolled by a building management system, signs will 
become digital signage, and transportation will have 
smart mobility such as connected cars, all of which 
are programmable. If cities become software-driven, 
always-crowded roads may be replaced by smart 
roads that optimize lanes and speed limits to optimize 
traffic conditions, and buses that seldom come may 
be replaced with self-driving cabs that stop in front of 
you the moment you want to go somewhere.

By constructing a city-scale CPS and using it to 
promote the softwarization of various urban services, 
we can expect dramatic changes and improvements in 
convenience and comfort on a city scale, similar to 
what happened when telephones became smart-
phones.  

2.   The key is to reduce the processing loads of 
and energy consumed by AI-inference processing

The question is, then, whether a city-scale CPS, 
which is the foundation supporting smart cities, can 
be readily implemented. A CPS consists of three 
major steps: sensing, computing, and actuation, and a 
variety of research is currently underway for each of 
these steps. The NTT Software Innovation Center 
(SIC) is developing an AI-inference infrastructure for 
sensing and computing. Sensing in a smart city is 
executed by analyzing a large amount of stream data 
continuously generated from cameras and various 
sensors placed throughout the city, as well as from 
connected cars and smartphones in the city, using 
inferencing based on deep learning (so-called AI 
inferencing) and converting the data into meaningful 
information. AI inferencing is also essential for 
reconstructing information in the form of a digital 
twin on a computer system and for computing the 
feedback that yields the desired results in the real 
world.

Traditionally, AI inferencing is a process that incurs 
excessive computation loads. Our solution is to 
develop a combination of stream merger and GPU 
(graphics processing unit) offloading to improve effi-
ciency and capacity. However, to achieve the Innova-
tive Optical and Wireless Network (IOWN) concept 
of implementing AI systems that can capture events 

Fig. 1.   A CPS.
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on a scale that cannot be handled by humans and ana-
lyze and make decisions at a speed that exceeds that 
of humans, it is necessary to increase the resolution 
and frames per second (FPS) of input data and sup-
port the sheer number of cameras and sensors that the 
city scale demands [3]. In general, the processing 
loads of and energy consumed by AI inferencing are 
proportional to the amount of data to be analyzed, so 
an explosive increase in the amount of input data 
leads directly to an explosive increase in processing 
loads and energy consumption. To achieve a city-
scale CPS that supports smart cities in the IOWN era, 
it is necessary to reduce the processing loads and 
energy consumed to a sustainable level. 

3.   Concepts and elemental techniques of  
event-driven inferencing

To reduce the processing loads and energy con-
sumption described above, we are developing the 
implementation concept of AI inferencing of stream 
data called event-driven inferencing. Event-driven 
inferencing makes the processing loads incurred by 
AI inferencing proportional to the amount of valuable 
information rather than the amount of input data 
(Fig. 2).

Conventional constant-processing AI inferencing 
treats all frames as equally important, so the process-
ing loads and energy consumption depend on frame 
characteristics (resolution, FPS, number of streams, 
etc.). Therefore, increasing the resolution, FPS, and 
number of cameras and sensors deployed will direct-
ly increase the processing loads and energy consump-

tion. At first glance, this may seem unavoidable, but 
consider the mechanism of human cognition. Humans 
use event-driven cognition, which lightly monitors 
the whole field of perception, and when a significant 
event (such as a sudden movement or sound) is 
noticed, closer attention is paid to that event. In this 
case, the processing loads and energy consumed for 
cognition depend on the number of objects in the field 
of perception important to the individual, i.e., the 
amount of valuable information. Event-driven infer-
encing involves the same principle to make AI-infer-
encing implementation practical.

There are several possible approaches to achieving 
event-driven inferencing. A typical approach is model 
cascading. Model cascading analyzes the same frame 
in multiple steps, which is detailed in the next section. 
Other approaches include temporal control and spa-
tial control. In temporal control, the analysis param-
eters of subsequent frames are controlled on the basis 
of the analysis results of the previous frame. For 
example, in temporal control, the analysis is executed 
at 5 FPS in normal operation, and only when a person 
is detected, the frequency of analysis is increased to 
15 FPS. Spatial control involves the topology of cam-
eras and sensors and uses the analysis results of one 
input source to control the analysis parameters of 
other input sources. For example, “Analyze the cam-
era images in the area only where a person is detected 
by the camera at the entrance of the monitored area.”

To actualize this concept, SIC is investigating 
model cascading and inference-resource sharing.

Fig. 2.   Concept of event-driven inferencing.
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4.   Model cascading

To achieve event-driven inferencing, events must be 
detected in some way. Model cascading combines a 
lightweight pre-scoping model for event detection in 
the first stage with an AI-inferencing model for full-
scale analysis in the second stage; the AI inferencing 
model is activated in the second stage only when an 
event occurs, thereby reducing overall processing 
loads (Fig. 3). There are several variations of pre-
scoping [3], including one that uses event detection to 
winnow the frames sent to the second stage, one that 
uses a lighter, lower-resolution model to infer the 
same task as the second stage and sends it to the sec-
ond stage only when the confidence in the processing 
result is low, and one that divides AI inferencing into 
separate parts and uses the first part for pre-scoping 
and sends the intermediate output to the second stage. 
The optimal configuration will vary depending on the 
use case and hardware configuration.

5.   Inference-resource sharing

Inference-resource-sharing technology is needed 
when the valuable information-dependent approach 
is used for processing in event-driven inferencing. 
Conventional constant-processing AI inferencing 
requires relatively constant amounts of hardware 
(resources), so it is easy to accommodate the 
demands. In event-driven inferencing, on the other 
hand, the required hardware resources change 
depending on the event, and it is necessary to prepare 
resources that can cope with an increase in load due 
to a concentration of events, but it is undesirable to 
leave resources reserved for peak times idle during 
normal times.

Server-oriented techniques (e.g., Triton Inference 
Server [4], KServe [5]) can be used to dynamically 

allocate hardware resources to suit changing infer-
ence requirements, but such techniques are generally 
designed for specific on-demand use cases. At SIC, 
we are researching and developing inference-resource 
sharing, which is an extension of server-oriented 
techniques for real-time stream processing. By using 
inference-resource sharing, it becomes possible to 
share inferencing resources among streams and 
obtain statistical multiplexing benefits by bundling 
multiple streams with different peaks in real-time 
stream-processing use cases.

6.   Future directions

In this article, we introduced the world view of a 
software-driven city (i.e., a smart city) achieved with 
a city-scale CPS, AI-inferencing infrastructure that 
can efficiently process high-resolution and multi-
camera images, concept of event-driven inferencing, 
and its basic techniques of model cascading and 
inference-resource sharing.

By using model cascading and inference-resource 
sharing, and by introducing the concept of event-
driven inferencing, we can expect to significantly 
reduce processing loads and energy consumption to 
practical levels, enabling the implementation of AI 
inferencing required by smart cities in the IOWN era. 
By accumulating the basic techniques for IOWN, we 
can also implement AI systems that can analyze and 
make decisions faster than humans. We will then cre-
ate services that are safer, more accessible, more 
sustainable, and more comfortable for everyone and 
solve a variety of social issues.
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