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1.   Introduction

Humans can estimate the depth and bokeh (shallow 
depth-of-field (DoF)) effects from a two-dimensional 
(2D) image on the basis of their experience and 
knowledge. However, computers have difficulty in 
doing this because they logically cannot have such 
experience and expertise. However, considering that, 
in the future, robots will be able to move around us 
and the real and virtual worlds will be integrated, it 
will be necessary to create computers that can act or 
present information on the basis of 3D data such as 
depth and bokeh information. Considering that a 
photo is one of the most frequently used forms of data 
for recording or saving information, understanding 
3D information from 2D images will be valuable for 
various 3D-based applications to reduce installation 
cost because it enables using easily available 2D 
images as input.

Three-dimensional understanding from 2D images 

has been actively studied in computer vision and 
machine learning. A successful approach is to learn 
the 3D predictor using direct or photometric-driven 
supervision after collecting pairs of 2D and 3D data 
[1] or sets of multi-view images [2]. This approach 
demonstrates good prediction accuracy due to the 
ease of training. However, collecting pairs of 2D and 
3D data or sets of multi-view images is not always 
easy or practical because they require special devices 
such as a depth sensor or stereo camera.

To reduce the data-collection costs, our team is 
investigating a fully unsupervised approach for learn-
ing 3D representations only from images without any 
additional supervision. In the study published in the 
34th IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR 2021) [3], I introduced a 
new deep generative model called aperture rendering 
generative adversarial network (AR-GAN), which 
can learn depth and bokeh effects from standard 2D 
images such as those on the web. Focus cues that are 
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inherent in photos but had not been actively studied in 
previous deep generative models were considered. 
On the basis of this consideration, our team devel-
oped AR-GAN to incorporate aperture rendering 
(particularly light field aperture rendering [4]) into a 
GAN [5] (a variant of deep generative models). This 
configuration allows synthesizing a bokeh image on 
the basis of the predicted depth and all-in-focus (deep 
DoF) image using a camera with an optical constraint 
on the light field.

The rest of this article is organized as follows. In 
Section 2, I first review two previous studies on 
which AR-GAN is based: GAN [5] and light field 
aperture rendering [4]. In Section 3, I explain AR-
GAN, which is the main topic of this article. In Sec-
tion 4, I discuss the experiments on the effectiveness 
of AR-GAN. In Section 5, I present concluding 
remarks and areas for future research.

2.   Preliminaries

2.1   GAN
GANs [5] can mimic training data without defining 

their distribution explicitly. This property enables 
GANs to be applied to various tasks and applications 
in diverse fields.

As shown in Fig. 1, a GAN is composed of two 
neural networks: a generator G(z) and discriminator 
D(x). These two networks are optimized through a 
two-player min-max game using an objective func-
tion LGAN:

LGAN = �𝔼xr~pr(x)[logD(xr)] 
+ 𝔼z~p(z)[log(1 − D(G(z)))],

where, given a latent variable z~p(z), a G(z) attempts 
to generate an image xg = G(z) that can deceive a D(x) 

by minimizing LGAN. By contrast, the D(x) attempts 
to distinguish a generated image xg from a real image 
xr~pr(x) by maximizing LGAN. Superscripts r and g 
denote the real and generated data, respectively. 
Through this adversarial training, a generative distri-
bution pg(x) reaches close to a real distribution pr(x).

2.2   Light field aperture rendering
Light field aperture rendering [4] is a module that 

simulates an optical phenomenon (particularly 
bokeh) on a camera aperture in a differentiable man-
ner. Note that such a differentiable property is neces-
sary for deep neural networks (DNNs), such as a G(z) 
(discussed in Section 2.1), to update the parameters 
through the backpropagation commonly used for 
DNNs.

More concretely, as shown in Fig. 2, the rendering 
provides an aperture renderer R(xd, d) that synthe-
sizes a bokeh image xs(r) from an all-in-focus image 
xd(r) and depth map d(r). Here, r indicates the spatial 
coordinates of the light field on the image plane.

I explain the details in a step-by-step manner. First, 
a depth map d(r) is expanded into a depth map for 
each view in the light field, i.e., m(r, u), using a neu-
ral network T:

m(r, u) = T(d(r)),

where u indicates the angular coordinates of the light 
field on the aperture plane. Subsequently, an all-in-
focus image xd(r) is warped into an image for each 
view of the light field, i.e., l(r, u), using the predicted 
m(r, u):

l(r, u) = xd(r + um(r, u)).

From this formulation, the left-side images in the 
light field (5 × 5 images in Fig. 2) represent images 

Fig. 1.   Architecture of GAN.
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when viewing objects from the left side, and the 
right-side images represent vice versa.

Finally, the l(r, u) is integrated using an aperture 
a(u) (an indicator that represents the disk-shaped 
camera aperture and takes ones for views within the 
aperture (indicated with white in Fig. 2) and zeroes 
otherwise (indicated with black in Fig. 2)) to render a 
bokeh image xs(r):

xs(r) = ∑ua(u) l(r, u).

When an object is on the focal plane, the object’s 
position is consistent regardless of the l(r, u). There-
fore, no bokeh occurs when the l(r, u) is integrated by 
the above equation. By contrast, when an object is 
separate from the focal plane, the object’s position 
varies depending on the l(r, u). Thus, bokeh occurs in 
this case. Hereafter, r and u are omitted for simplicity 
except in necessary cases.

3.   AR-GAN

3.1   Problem statement
The problem statement is clarified before explain-

ing the details of AR-GAN. As described in Section 
1, AR-GAN is used to learn depth and bokeh effects 

only from images without additional supervision. In 
this setting, it is not easy to construct a conditional 
generator that directly predicts the depth or bokeh 
effects from an image due to the absence of pairs of 
2D and 3D data or sets of multi-view images. There-
fore, as an alternative, the aim is to learn an uncondi-
tional generator that can generate a tuple of an all-in-
focus image xd

g, depth map dg, and bokeh image xs
g 

from a latent variable z.
AR-GAN uses focus cues as a clue for addressing 

this challenge. When the training images are highly 
biased in terms of bokeh effects (e.g., all training 
images are all-in-focus), it is difficult to gain focus 
cues from the images. Therefore, it is assumed with 
AR-GAN that the training dataset includes various 
bokeh images. Note that this assumption does not 
mean that the training dataset contains sets of differ-
ent bokeh images for each instance. Under this 
assumption, AR-GAN learns the generator in a wis-
dom of crowds approach.

3.2   Model architecture
The processing flow of the AR-GAN generator is 

presented in Fig. 3. Given a latent variable z, the AR-
GAN generator generates an all-in-focus image  

Fig. 2.   Processing flow of light field aperture rendering.
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xd
g = Gx(z) and depth map dg = Gd(z) using an all-in-

focus image generator Gx(z) and a depth generator 
Gd(z), respectively. Subsequently, the aperture ren-
derer R(xd, d) (explained in Section 2.2) synthesizes 
a bokeh image xs

g = R(xd
g, dg). Using this configura-

tion, AR-GAN makes it possible to generate a tuple 
of an all-in-focus image xd

g, depth map dg, and bokeh 
image xs

g using a camera with an optical constraint on 
the light field.

3.3   Training method
As shown in Fig. 1, a typical GAN applies a D(x) to 

the final output of the G(z) (i.e., xs
g in the case of the 

AR-GAN generator). However, in the AR-GAN gen-
erator, three modules, i.e., Gx(z), Gd(z), and R(xd

g, dg) 
are trainable. Therefore, they compete for roles if 
there is no constraint. For example, they can fall into 
an extreme solution (e.g., R(xd

g, dg) learns strong 
bokeh effects and Gx(z) learns over-blurred images).

To alleviate this problem, AR-GAN is trained using 
DoF mixture learning. Figure 4 illustrates the com-
parison between the standard GAN learning and DoF 
mixture learning. In the standard GAN learning 
shown in Fig. 4(a), the G(z) attempts to cover the 
overall real image distribution using generated imag-
es without any constraint. Consequently, it cannot 
determine to make a generated image xg close to a 
real all-in-focus image xd

r or a real bokeh image xs
r 

(indicated with question marks “?” in Fig. 4(a)).
By contrast, as shown in Fig. 4(b), in DoF mixture 

learning, the AR-GAN generator attempts to repre-
sent the real image distribution using generated 
images, the bokeh degrees of which are adjusted by a 
scale factor s. More concretely, the GAN objective 
function presented in Section 2.1 is rewritten as fol-
lows:

LAR−GAN = �𝔼xr~pr(x)[logD(xr)] + 𝔼z~p(z),s~p(s) 

[log(1 − D(R(Gx(z), sGd(z))))],
where s ∈ [0, 1]; when s = 0, an all-in-focus image xd

g 
is generated, whereas when s = 1, a bokeh image xs

g is 
rendered. Intuitively, the aperture renderer R(xd

g, dg), 
which has an optical constraint on the light field, 
functions as a bokeh image prior. This prior encour-
ages a generated all-in-focus image xd

g to approxi-
mate a real all-in-focus image xd

r (indicated by the 
“All-in-focus image” in Fig. 4(b)) and promotes a 
generated bokeh image xs

g to mimic a real bokeh 
image xs

r (indicated by the “Bokeh image” in Fig. 
4(b)). Consequently, dg, which connects xd

g and xs
g, is 

also optimized. In this manner, the DoF mixture 
learning allows optimizing Gx(z), Gd(z), and R(xd

g, dg) 
together under an optical constraint.

A remaining challenge specific to unsupervised 
depth and bokeh learning is the difficulty in distin-
guishing whether blur occurs ahead of or behind the 
focal plane. For this challenge, on the basis of the 
observation that the focused image tends to be placed 
at the center of a photo, AR-GAN uses the center 
focus prior, which encourages the center to be 
focused while promoting the surroundings to be 
behind the focal plane. In practice, this prior is only 
used at the beginning of training to determine the 
learning direction.

4.   Experiments

4.1   Image and depth synthesis
The previous AR-GAN study [3] demonstrated the 

utility of AR-GAN using various natural image data-
sets, including flower (Oxford Flowers [6]), bird 
(CUB-200-2011 [7]), and face (FFHQ [8]) datasets. 

Fig. 4.   Comparison between standard GAN learning and DoF mixture learning.
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The implementation details are omitted because of 
space limitations. See that AR-GAN study [3] if 
interested in the implementation details.

Figure 5 shows examples of generated images and 
depth maps. AR-GAN succeeds in generating a tuple 
of an all-in-focus image (upper left), bokeh image 
(upper right), and depth map (lower left) in every set-
ting. For example, in Fig. 5(a), the background is 
blurred while the foreground is unchanged in bokeh 
conversion (the conversion from the upper left to 
upper right). In depth prediction (the transformation 
from the upper left to lower left), the depth map 
(lower left) corresponding to the image (upper left) is 
successfully predicted. A light color indicates the fore-
ground while a dark color indicates the background. 
Recall that the training data are only 2D images, and 
depth and bokeh effects are not provided as supervi-
sion. In this manner, learning depth and bokeh effects 
only from 2D images is the main strength of AR-GAN.

4.2   �Application to bokeh rendering and depth 
prediction

As discussed in Section 3.1, AR-GAN learns an 
unconditional generator that generates a tuple of an 
all-in-focus image xd

g, depth map dg, and bokeh image 
xs

g from a latent variable z. Therefore, it cannot be 
directly used to convert a given image to the bokeh 
image or depth. However, AR-GAN can generate sets 
of all-in-focus and bokeh images or sets of all-in-
focus images and depth maps artificially and abun-
dantly by randomly changing the latent variable. By 
using these data, we can learn a bokeh renderer (i.e., 
a converter that converts an all-in-focus image to a 
bokeh image) and depth predictor (i.e., a predictor 
that predicts a depth map from an image) in a super-
vised manner.

Figure 6 shows example results obtained with the 
bokeh renderer and depth predictor mentioned above. 
A photo I took was used as an input (Fig. 6(a)). The 

Fig. 5.   Examples of generated images and depth maps.
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bokeh renderer synthesizes a bokeh image (Fig. 6(b)), 
and the depth predictor predicts a depth map from the 
input image (Fig. 6(c)). Similar to the results in 
Fig. 5, the background is blurred while the fore-
ground remains unchanged in the bokeh conversion 
(the conversion from (a) to (b)), and the depth map 
corresponding to the input image is predicted in the 
depth prediction (the transformation from (a) to (c)).

Note that the data required for training the bokeh 
renderer and depth predictor are only the data gener-
ated by AR-GAN, and no additional data are needed. 
That is to say, in this setting, we can learn a bokeh 
renderer and depth predictor in a fully unsupervised 
manner, similar to AR-GAN. This is a strength of an 
AR-GAN-based approach.

5.   Conclusion and future work

This article explained AR-GAN, which is a new 
deep generative model enabling the unsupervised 
learning of depth and bokeh effects only from natural 
images. Since we live in the 3D world, human-orient-
ed computers are expected to understand the 3D 
world. For this challenge, AR-GAN is effective 
because it can eliminate the requirement of 3D data 
during training. AR-GAN is expected to enable the 
exploration of new possibilities in studies on 3D 
understanding.

AR-GAN will also be useful for many applications 
in various fields such as environmental understanding 
in robotics, content creation in advertisements, and 
photo editing in entertainment. For example, AR-
GAN can learn a data-driven model from collected 
images. Using this strength, a data-driven bokeh ren-
derer reflecting a famous photographer can be con-
structed if we can collect his/her photos. Thus, AR-
GAN can be used to obtain more natural and impact-
ful bokeh images and enrich the functionality of 
photo-editing applications (e.g., smartphone applica-

tions for social media).
Future work includes further improvement of depth 

and bokeh accuracy since unsupervised learning of 
depth and bokeh effects is an ill-posed problem, and 
there is room for improvement. Our team is tackling 
this challenge, and my latest paper [9] has been 
accepted to CVPR 2022. Due to space limitations, 
details of this are omitted. Please check my latest 
paper [9] if interested in the details.
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