
NTT Technical Review 22Vol. 20 No. 8 Aug. 2022

1.   Introduction

The All-Photonics Network (APN), one of the three 
technologies that comprise the Innovative Optical 
and Wireless Network (IOWN), is expected to lever-
age photonics technology to achieve a significant 
increase in the potential of the information-process-
ing infrastructure, something that is difficult to 
achieve with current electronics technology [1]. The 
APN is expected to achieve a 125-fold increase in 
transmission capacity and maximum end-to-end 
adoption of optical technology from the network to 
the terminal. For high-capacity optical transmission, 
it is important to expand the use of wavelength-divi-
sion multiplexing (WDM), which is currently used in 
optical networks, in addition to the application of 
technologies that have not yet been commercialized 
such as spatial multiplexing. In other words, the 
wavelength bandwidth used for optical fiber commu-
nications will be expanded to achieve higher capacity. 
Expanding the wavelength bandwidth of WDM is 

also effective in the end-to-end application of optical 
technology [2], which requires an increase in the 
number of optical paths that can be established. In 
this case, the expansion of the wavelength bandwidth 
in WDM is also an important issue.

2.   Multiband ROADM network

In optical networks, optical switches are essential 
for routing light as it is. Reconfigurable optical add/
drop multiplexing (ROADM) systems have been 
introduced for optical networks using optical switch-
es, which enable optical signals to be added and 
dropped at each node. By enabling optical-signal 
transmission between multiple rings without electri-
cal regeneration, ROADM systems can flexibly recon-
figure the network and reduce operation and mainte-
nance costs. The conventional single-ring network 
has been extended to a more economical multi-ring 
network, as shown in Fig. 1 [3]. The optical-node con-
figuration called colorless, directionless, contentionless 
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(CDC)-ROADM is one of the most flexible optical-
node configurations for efficient data communication 
in multi-ring and mesh networks. It is not only effec-
tive for efficient operation of communication 
resources [4] but also expected to contribute to rapid 
restoration in the event of optical-transmission-line 
breakdown during a disaster [5].

Another trend in optical transmission technology is 
the discussion about increasing the baud rate of opti-
cal signals [6]. High baud rates are suitable for trans-
mitting large signals over long distances. This is 
because a high-baud-rate signal contributes to a 
reduction in the level of multiplicity when compared 
with a signal of the same bit rate, thus expected to 
improve the signal-to-noise ratio. However, high-
baud-rate signals occupy a wider signal bandwidth, 
which reduces the number of wavelengths available 

in a single-band ROADM system. As shown in Fig. 2, 
for example, a 100-Gbit/s signal occupies about 32 
GHz, and about 90 wavelength channels can be 
deployed in the currently used C-band (1530 to 1565 
nm) or L-band (1565 to 1625 nm) [7]. For a 500-Gbit/s- 
class signal with an occupied bandwidth of 64 GHz 
or 1 Tbit/s-class signal with an occupied bandwidth 
of 130 GHz, only about 60 or 30 waves can be placed 
at most, respectively. The use of both C- and L-bands 
is an effective solution to this problem.

3.   C+L-band CDC-ROADM

CDC-ROADM is an optical network node configu-
ration that makes one of the most efficient use of the 
optical transmitters and receivers (transponders) 
installed in a system. Because an optical node must 

Fig. 1.   Example of multi-ring network.
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be able to communicate with optical nodes in other 
directions, a CDC-ROADM node can use optical 
transponders installed in the node for communication 
with any direction with the fewest restrictions, thus 
effectively using communication resources. 
Figure 3(a) shows a typical CDC-ROADM configu-
ration, which consists of an optical cross-connect 
block and optical transponder aggregation blocks. 
The optical cross-connect switches optical signals 
from different nodes directly to other paths (e.g., 
from West to East) or uses these signals for commu-
nication between the node and others. The optical 
transponder aggregator controls the connection 
between the optical cross-connect and optical tran-
sponder for the optical signals handled by the node. 
In conventional ROADM systems, optical transpon-
ders can only be used for communication with a spe-
cific direction (directioned), or only one optical 
transponder of the same wavelength can be used 
(contensioned). CDC-ROADM is a highly flexible 
optical node configuration that enables any optical 
transponder to be used for communication with any 
path as long as that path’s wavelength is not already 
in use. The NTT Device Innovation Center was the 
first in the world to successfully implement multicast 
switches [8].

With the shift to multiband optical transmission, 
CDC-ROADM, which has been configured with a 
single C- or L-band, must now also be multiband. If a 
CDC-ROADM is configured using conventional opti-
cal switch devices that operate only in the C- or 
L-band, it will have a complex configuration, as 

shown in Fig. 3(b). Both the optical transponder 
aggregator and optical cross-connect must be pre-
pared for the C-band and L-band, and the optical 
signals handled by each must be combined and 
divided by a C-/L-band (de)multiplexer to communi-
cate with the transmission fiber, doubling the amount 
of equipment compared with the conventional single-
band system. This results in complexity in the node 
configuration as well as operation because operators 
have to be aware of the bands. For example, optical 
transponders are optimized for only the C- or L-band, 
so that the operator needs to be careful into which 
system he/she should plug the transponders. In con-
trast, by using a multicast switch with an extended 
operating wavelength range to the C+L-band, a CDC-
ROADM node with a simple configuration can be 
implemented, as shown in Fig. 3(c). This is thought 
to contribute to the reduction in errors during opera-
tion.

Multicast switches have intrinsic loss due to their 
principle. Figure 4(a) shows the circuit topology of a 
multicast switch that accommodates M-degree × N 
transponder ports. The arrow indicates the direction 
of optical-signal propagation where the figure shows 
the case of signal drop use. Figure 4(b) shows the 
appearance of the optical circuit chip of the fabricated 
C+L-band multicast switch. The multicast switch 
contains a splitter that splits the input signal into N 
branches. This is the principal loss factor and cannot 
be avoided. Therefore, it is preferable to reduce the 
number of branches as much as possible for optical 
transmission characteristics, but reducing the number 

Fig. 3.   Configuration of multiband CDC-ROADM node.
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of branches also impacts the achievable add-drop 
ratio. However, when dealing with high-baud-rate 
transmission, the add-drop ratio can be kept at the 
same level as the conventional single-band version of 
the node even if the number of branches is reduced. 
In a high-baud-rate system, such as 130 Gbaud, the 
number of wavelengths that can be allocated in a 
band is also reduced, as mentioned above. Therefore, 
the reduction in the add-drop ratio due to the reduced 
number of branches can be maintained at the same 
level compared with a conventional 32-Gbaud sys-
tem. Table 1 summarizes the add-drop ratio for a 
single-band system with a conventional 32-Gbaud 
signal and a C+L-band configuration of 130-Gbaud 
signals. The former is assumed to have a channel 
spacing of 50 GHz and 96 signals in the C-band, 
while the latter has a spacing of 150 GHz and 64 sig-
nals in both the C- and L-bands. The add-drop ratio 
depends on the size of the wavelength selective 
switch (WSS) in the optical cross-connect block. In 
this article, we assume a 1 × 20 WSS, which was 
available when the single-band system was devel-

oped, for the conventional single-band-only system, 
and 1 × 32 WSS, which has been put into practical 
use, for the C+L-band ROADM system. As shown in 
Table 1, a C-band-only system using a multicast 
switch with 8-degree ports and 16 transponder ports 
has an add-drop ratio of 27%, while a multicast 
switch with 8 optical transponder ports has an add-
drop ratio of 26% and can be obtained for a 130-
Gbaud signal. Therefore, even if the number of mul-
ticast-switch branches is halved from 16 to 8, the 
same level of operability can be secured as with the 
conventional single-band configuration. In practice, 
it is reasonable to estimate the required average add-
drop ratio by dividing the total number of wave-
lengths by the number of nodes in the ROADM sys-
tem. Thus, even a network with 10 or so nodes 
requires an average add-drop ratio of only 10%. The 
cases shown in Table 1 clearly satisfy this require-
ment.

Fig. 4.   Multicast switch.
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Table 1.   Dependence of add/drop ratio on the number of branches of multicast switch and signal baud rate.

Number of transponder ports of multicast switch

4 8 12 16 24

Single-band node with 32-Gbaud signals 6.8% 13.5% 20.3% 27.1% 40.6%

C+L-band node with 130-Gbaud signals 13.0% 26.0% 39.1% 52.1% 78.1%
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4.   Summary

We described the feasibility of a CDC-ROADM 
configuration with an optical transponder aggregator 
that operates in the C+L-band. We also successfully 
conducted feasibility verification experiments of a 
C+L-band CDC-ROADM node using the aforemen-
tioned C+L-band multicast switch [9]. 

Multiband technology not only increases capacity 
but also increases the degree of freedom in ROADM 
systems by expanding the number of transmission 
channels. Combined with the increase in transmis-
sion distance due to higher baud rates, multiband 
technology contributes to the advancement of optical 
networks. NTT is currently conducting research and 
development of the APN for IOWN. To implement 
the APN, we will continue our research and develop-
ment to dramatically expand the transmission capac-
ity and improve optical transmission systems by 
increasing the speed to 1 Tbit/s by using a wider 
wavelength band such as the S-band as well as using 
spatial multiplexing technology.
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