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1.   Non-Hermitian photonics

To generate and control optical signals, devices 
such as lasers, modulators, and photodetectors are 
required. They vary the intensity of light by amplify-
ing it via stimulated emission, releasing it from opti-
cal signal channels, or absorbing it with the genera-
tion of electric carriers. In the Maxwell equation of 
electromagnetism, optical amplification gain and 
absorption loss in a medium are expressed as the 
imaginary part of its refractive index. When resona-
tors and waveguides comprise media with finite 
imaginary parts of refractive indices, possible states 
of electromagnetic waves confined in them (eigen-
modes) have generally complex frequencies and 
propagation constants (eigenvalues). The imaginary 
part of the eigenvalue corresponds to the rate of opti-
cal gain or loss per unit time for a resonator and per 
unit propagation distance for a waveguide.

A system is called Hermitian when the energy of 
the physical quantity of interest (light waves here) is 

conserved. In contrast, a system based on energy-
non-conserving processes is non-Hermitian. Since 
the mode eigenvalues of a non-Hermitian optical 
system are complex numbers, as mentioned above, 
light waves there may continue to be amplified or 
absorbed until the carrier response is saturated or may 
be totally radiated out. Unlike Hermitian systems, 
eigenmodes of non-Hermitian systems are generally 
not orthogonal to each other. Given that it is impos-
sible to measure a completely closed system without 
energy dissipation, all the states we observe are those 
of non-Hermitian systems. This means that every 
state of optical systems may not be independent but 
more or less mixed with other ones. Responses of 
such non-Hermitian systems seem to be much more 
diverse and difficult to understand compared with 
Hermitian systems that are assumed as approxima-
tions in many cases. In addition, gain and loss had 
been considered to only control the intensity of light 
in photonics. Thus, the research for other applications 
of them had been limited.
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1.1   PT symmetry
A turning point in these circumstances was the 

introduction of the concept of parity-time (PT) sym-
metry to photonics [1] by the group headed by Profes-
sor Christodoulides at the University of Central 
Florida. Parity in PT symmetry means spatial inver-
sion. This corresponds to setting a central axis or 
plane of symmetry (double-sided mirror) in space 
then inverting the system (or jumping to the world on 
the other side of the mirror). Time in PT symmetry 
stands for time reversal, which means turning gain to 
loss and loss to gain. A system is said to have PT sym-
metry when both of these operations make it get back 
to its original shape. While PT symmetry has attract-
ed attention in quantum mechanics, Makris et al. 
showed that the analogy of PT symmetry in the 
above-mentioned sense held in the refractive index 
distributions of optical systems. They also showed 
that such a system could have a peculiar mode degen-
eracy called an exceptional point (EP).

We now explain the characteristics of a coupled 
two-cavity system with PT symmetry shown in 
Fig. 1(a). We assume that each resonator has an 
eigenmode (cavity mode) with an identical resonance 

frequency when isolated. The cavities are placed in 
proximity with an interval of the order of the mode 
wavelength. Thus, a small number of fields of one 
cavity mode seeps into the other via the evanescent 
wave*1 so that they are coupled with each other. The 
system is PT-symmetric when two cavities have loss 
and gain with the same magnitude γ. Note that the 
gain rate is denoted as a negative value of –γ, which 
is contrasted to that of the loss γ > 0.

1.2   EP phase transition
Figure 1(b) shows how the system response chang-

es when the coupling rate is fixed to κ and the γ of the 
balanced gain and loss is varied. The left and right 
plots respectively show the eigenmode frequencies 
(the real part of the complex eigenfrequency) with 
reference to the single cavity mode frequency ω0 and 
their net loss rates (the imaginary part of the complex 
eigenfrequency) for which negative values mean 

Fig. 1.   PT symmetry and EP phase transition of two coupled resonators.
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*1 Evanescent wave: A weak light wave that enters a medium with 
exponential spatial attenuation. It appears when the light with a 
certain wavelength is reflected from a medium that has no propa-
gation mode for that wavelength, such as a photonic crystal or 
mirror.
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gain. When γ = 0, which corresponds to the Hermitian 
system, the two eigenmode frequencies are split by 
2κ by the coupling. The eigenmode distributions are 
two orthogonal states termed symmetric and antisym-
metric. As γ increases, the frequency splitting 
decreases then changes abruptly toward zero near γ = 
κ. In this case, because both eigenmodes distribute an 
equal field intensity for the two cavities with bal-
anced gain and loss, their net loss or gain rates are 
exactly zero. When γ > κ, the two mode frequencies 
are the same. In contrast, the eigenmodes’ loss or gain 
rates split sharply into positive and negative values. 
Despite the fact that the cavities are supposed to be 
coupled, the eigenmodes become localized by the 
increase in γ ; one concentrates in the cavity with 
gain, hence amplified, and the other is in the lossy 
cavity, thus damped. When the gain, loss, and cou-
pling rates are equal (γ = κ), the eigenmode frequen-
cies coincide, and the net loss or gain rates remain 
zero just before the bifurcation. What happens is not 
the accidental degeneracy of two different states with 
the same complex frequency; the distributions of the 
two modes rather become completely the same. Thus, 
there is only a single state. The degeneracy in this 
sense is a phenomenon peculiar to non-Hermitian 
systems and termed an EP. It can also be said that an 
EP is a phase-transition point from modes spreading 
over the entire system to those localized in cavities 
with gain or loss.

To date, a number of unconventional phenomena 
based on this EP phase transition have been reported, 
and readers can refer to a previous review article [2]. 
Examples include non-reciprocal propagation*2, sin-
gle-mode oscillation, and the enhancement of fre-
quency perturbation effect, each of which has a good 
potential for practical use. Non-reciprocal propaga-
tion is a necessary condition for an optical isolator 
that protects a laser against instability by undesired 
optical feedback. Although integrating an optical iso-
lator into a photonic circuit is technically difficult, it 
is an important element to complete optical informa-
tion processing within a chip. Unfortunately, the non-
reciprocal property near an EP is valid only for a 
certain range of the input light intensity because it is 
based on gain saturation. Thus, further studies are 
needed to pave the way for achieving a practical iso-
lator based on an EP.

2.   Observation of EP degeneracy by coupled 
photonic crystal laser

There are very few examples of observing EP 

degeneracy in photonics because of certain technical 
problems. One issue is the need for precise control of 
gain and loss. An EP is actually a point in the gain and 
loss parameter space, around which the complex 
eigenfrequencies vary greatly. Therefore, to observe 
EP degeneracy, it is necessary to control the gain and 
loss of each cavity independently and continuously. 
Another issue is the change in individual cavity fre-
quency in controlling gain and loss. Regarding cou-
pled cavities with the above-mentioned controllabil-
ity, integrated systems of multiple semiconductor 
lasers are considered first. However, since driving 
them is accompanied by the generation of heat and 
free carriers, the real part of the refractive index of 
each cavity medium also changes when the gain and/
or loss difference is introduced. As a result, the reso-
nant frequencies of the two cavity modes diverge. 
Because this frequency detuning is known to lift EP 
degeneracy, it is necessary to use lasers with high 
excitation efficiency as much as possible to minimal-
ize the impact of such an effect.

2.1   Current-injected photonic crystal laser
We fabricated the coupled system of two current-

injected photonic crystal lasers [3] shown in Fig. 2(a). 
The system is structured on an indium phosphide 
(InP) thin film suspended in air. It has a two-dimen-
sional photonic crystal with an array of air holes with 
a diameter of about 200 nm. Two wavelength-scale 
gain media*3 with quantum wells (red rectangles in 
the figure) are embedded in line defects without air 
holes and work as nanocavities. In addition, p-doped 
layers (purple parts) and n-doped layers (green parts) 
are formed in the oblique directions from the four 
electrodes (yellow parts), constituting two in-plane 
current-injection channels. Because this structure 
suppresses the leakage current between the electric 
channels, the gain and loss of each nanocavity can be 
controlled independently by current injection. To 
date, by using such a photonic crystal laser on the 
basis of a buried heterostructure nanocavity, we dem-
onstrated the smallest laser threshold current in the 

*2 Non-reciprocal propagation: Propagation under the condition that 
the scattering matrix representing the input and output relation 
for an optical component is asymmetric because of the magneto-
optical, nonlinear optical, or time-modulation effects.

*3 Gain medium: A medium that can amplify light in the spontane-
ous emission wavelength range by stimulated emission based on 
the population inversion of electric carriers. Its activation requires 
short-wavelength light irradiation (optical pumping) or current 
injection (electric pumping). Our experiment exploited the prop-
erty that a gain medium with no or small injection current acts as 
an optical absorber.
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world [4]. The low current drive of our system mini-
malizes the detrimental effect of the cavity-frequency 
detuning due to heat and carriers.

In Fig. 2(a), the right and left cavities and current 
channels are numbered 1 and 2, and the inter-elec-
trode current values for channel 1 and 2 are denoted 
as I1 and I2, respectively. The emission spectrum of 
the system was measured while I1 and I2 were varied. 
As a result, when I2 was fixed at 100 μA and I1 was 
decreased, a clear EP phase transition was observed. 
Figure 2(b) shows the color plot of such emission 
spectra for different I1. Here, I2 = 100 μA is the condi-
tion to compensate for the loss γ2 due to absorption 
and radiation in cavity 2 (γ2 ~ 0). However, a finite 
loss γ1 of resonator 1 remains. Consequently, the 
entire system does not oscillate, and weak spontane-
ous emission of photons is hence observed. As I1 
diminishes, the two spectral peaks indicating coupled 
modes approach each other and eventually coalesce. 
This is because the difference in the loss of the two 
cavities is enhanced by the increase in γ1, resulting in 
the variation of the eigenmode frequencies similar to 
that in Fig. 1(b). By fitting the spectra using a theo-
retical model, we can estimate the resonance fre-
quency of each cavity mode, cavity coupling κ, and 
loss γ1. We found that the system was very near the 
exact EP when I1 = 1.4 μA. The detrimental frequen-
cy detuning of the two cavities is also very small. This 
can be seen from the fact that the theoretical eigen-
wavelengths (black points in Fig. 2(b)) calculated 
from the fitting result are aligned with a point in the 
relevant region. If I1 is further decreased, the peak 

photon number increases in spite of the magnified 
loss. This is thought to be because one of the eigen-
modes is localized in resonator 2, which has a large 
injection current, becoming less susceptible to the 
loss of resonator 1. This intensity recovery also sup-
ports the EP phase transition illustrated in Fig. 1(b).

2.2   Spontaneous emission spectrum at the EP
We also clarified that the spectrum near the 

observed EP mentioned above indicated the peculiar 
enhancement of spontaneous emission. Even though 
the loss of one cavity is compensated and the other 
has a loss, the system with a large coupling exhibits a 
spontaneous emission spectrum that is expressed as 
the sum of two split Lorentzian functions*4 (blue 
spectrum in Fig. 3(a)). In contrast, the emission spec-
trum of the EP state takes the shape of the squared 
Lorentzian function (red spectrum in Fig. 3(a)) [5]. 
When the system can be approximated as a Hermitian 
one, the two modes are almost independent. Thus, 
even if their peaks coincide accidentally, the emission 
spectrum will only be the sum of them, that is, a 
Lorentzian function with twice their peak intensity. In 
stark contrast, the two modes degenerate into exactly 

Fig. 2.   EP phase transition of current-injected photonic crystal lasers.
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*4 Lorentzian function: The name of a function that represents the 
shape of the power spectrum of a general resonator response that 
exhibits exponential energy decay (in the present case, radiation 
based on spontaneous emission). If the system suffers from sig-
nificant noise, the spectrum is disrupted and its shape becomes a 
Gaussian function with a broader linewidth. The reliable spec-
trum analysis for our experiment was enabled by both low-noise 
current drive of the device and low-noise spectroscopic measure-
ment by long-time integration.
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the same state at the EP, exhibiting constructive inter-
ference in the spectral domain. Suppose we vary only 
the coupling κ that always preserves the energy so 
that the system is dragged to the EP condition while 
keeping the other parameters constant. In this case, 
we can measure the impact of the spectral change 
induced purely by EP degeneracy. Because of the 
maximum intensity change due to the interference, 
the peak intensity of the EP spectrum (colored red) is 
four times (= (1 + 1)2) larger than those of the split 
Lorentzian peaks (blue). From the energy conserva-
tion, the total integrated powers for the two spectra in 
Fig. 3(a) are equal, and the loss of the eigenmodes for 
them is also the same. Despite this, the peak intensity 
of the EP is enhanced via the spectral change in 
which the shape becomes squared-Lorentzian; thus, 
the linewidth becomes narrower than the Lorentzian 
peaks for the large coupling.

Our system can control the gain and loss of each 
laser but not the coupling between the lasers. In our 
experiment, unfortunately, the effect of reducing the 
peak intensity by increasing γ1 was superimposed on 
the measurement results. Thus, the directly observed 
ratio of the peak-intensity enhancement by the EP is 
about 30%. However, as shown in Fig. 3(b), we also 
observed that the emission spectrum at I1 = 1.4 μA, 
which was closest to the EP, was a squared Lorent-
zian function. This result indicates that the system is 
under an almost exact EP degeneracy. This means 
that the effect of EP degeneracy can be clearly 
observed if the system approaches the states at which 
its complex-eigenfrequency splitting is small enough 
compared with the linewidths of the modes.

3.   Future outlook

In this article, we introduced the observation of EP 
degeneracy with our current-injected photonic crystal 
lasers. We are now conducting experimental demon-
strations of our other theoretical proposals, such as 
the control of group velocity using an EP [6] and that 
of photonic topology by gain and loss [7], by using 
more large-scale photonic crystal laser arrays. We are 
also exploring new principles and phenomena in non-
Hermitian nanophotonics.
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Fig. 3.   Enhancement of the system’s spontaneous emission due to EP degeneracy.
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