
NTT Technical Review 58Vol. 20 No. 8 Aug. 2022

1.   Introduction

Recent large-scale information-transportation tech-
nology has been driven by the development of pho-
tonic devices, such as photonic transceivers, receiv-
ers, and switches. Due to these technological devel-
opments, the barrier between photonics and electron-
ics has been lowered, which enables the integration of 
photonic and electric circuits into a single module. 
Such optoelectronic integration technology is now 
advancing for much larger-scale and energy-efficient 
optical transmission [1]. Optoelectronic integration 
has been gaining attention for applying photonic cir-
cuits as computation units, such as logic gate [2], 
matrix operation [3] and/or optimization solver [4], 
beyond the simple optical link function. These stud-
ies revived the development of optical computing, 
which was intensively studied during the 1980s. This 
revival is also related to the explosive evolution in 
artificial intelligence (AI).

Information processing in AI involves brain-
inspired computational algorithms called artificial 
neural networks (ANNs). Their computation is based 
on a huge amount of matrix operations and nonlinear 
processing, which requires energy-hungry large-scale 
computational resources. As the demand for such 
computation is explosively increasing, the develop-
ment of special-purpose AI hardware providing much 

faster and more energy-efficient computational 
resources has been intensively studied. The photonic 
implementations of ANNs are attracting interest 
because they have potential to reduce operational 
power, increase speed, and reduce latency beyond 
what is possible in electronic computing. Unlike 
digital calculation on conventional electronic circuits, 
photonic computing uses analog values,   such as the 
intensity and phase of optical signals, as information. 
Its propagation and interference are considered as the 
computation. For example, when we input an optical 
signal to an optical interferometer, as shown in 
Fig. 1(a), the optical signals interfere with each other. 
The output intensities can be considered the results of 
the matrix product of the input signals and parameters 
in the interferometer. This calculation is conducted 
only by high-speed light propagation and interference 
without principle energy consumption. More large-
scale computation is possible by using the optical 
signal multiplexing technologies developed for tele-
com application, such as time, wavelength, and space 
division multiplexing. We can construct various 
ANNs by designing the configuration of an optical 
interference system, as shown in Fig. 1(b). 
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2.   Reservoir computing and its 
photonic implementation

Reservoir computing (RC) is a type of recurrent 
neural network having recursive connections, as 
shown in Fig. 2(a). In the RC framework, the weights 
of the input and reservoir layers are randomly fixed 
and not trained. Only the output weights are trained 
by linear regression such as the least squares method, 
which is much simpler than the training method used 
in standard ANNs such as backpropagation. In spite 
of the simple configuration, RC has shown excellent 
performance comparable to that of standard ANNs on 

a series of benchmark tasks such as speech recogni-
tion, economic forecasting, and action detection in 
video data. RC also has advantages from the view-
point of photonic implementation. Standard deep 
ANNs require fine tuning of each weight through the 
use of the error back propagation algorithm, which 
requires highly accurate and uniform large-scale inte-
gration of tunable optical elements, which is a chal-
lenging issue for fabrication. The training time of a 
photonic ANN is generally much longer than that 
with electrical devices because the reconfiguration of 
optical weights takes milliseconds. In the RC frame-
work, however, there is no need for any fine tuning of 

Fig. 1.    (a) Schematic of matrix product operation using photonic interferometer. (b) Examples of ANN emulations using 
photonic circuits.
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Fig. 2.   (a) Overview of RC framework. (b) Schematic of our on-chip photonic RC architecture.
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the optical system under training. As the training time 
is determined by forward propagation in RC, it can be 
accelerated using photonics. Thus, we focused on this 
configuration at the first stage of photonic implemen-
tation of an ANN.

Figure 2(b) shows our previously proposed device 
architecture for photonic RC [5]. In the input optical 
circuit (left side in figure), the optical signal is 
weighted along the time and space directions, which 
emulate the input layer of RC. In the circuit for the 
reservoir layer (right side in figure), a ring-shaped 
optical cavity array represents a recursive coupling of 
neurons, emulating the reservoir layer of RC. The 
output signals from the reservoir optics are converted 
to an electric signal by using a photodetector (PD). 
By weighting the output signals on the electric digital 
circuit, we can obtain a final output signal of RC. We 
implemented our RC architecture using a silica-based 
optical waveguide technology called planar light-
wave circuit (PLC), which was originally developed 
for optical telecom devices. Our PLC acts as pho-
tonic RC with 512 reservoir neurons, which is over 30 
times larger than in previous on-chip photonic imple-
mentations. The PLC can execute the multiply and 

accumulate operations beyond 20 tera times per sec-
ond for each wavelength and reach peta-scale compu-
tation speed on a single photonic chip by using wave-
length division multiplexing. This value is beyond 
recent electronic computation. We experimentally 
confirmed the performance of our PLC using stan-
dard benchmark tasks such as hand-written-digit 
classification. We could classify hand-written-digits 
images with an accuracy of 91.7% and ultrafast pro-
cessing speed of 17.1 ns per image. This accuracy and 
speed is the highest for on-chip photonic RC imple-
mentation.

3.   Application of photonic RC

As one of the features of photonic computation is 
its high-speed processing, we believe that it is suit-
able for applications that can use this advantage. An 
example of such an application is signal processing 
for optical communication, as shown in Fig. 3(a). In 
recent optical communication, the distortions of the 
transmitted optical signals are compensated for using 
a digital signal processor (DSP). Its computational 
costs, however, becomes an issue to increase the  

Fig. 3.    (a) Application of photonic RC for coherent fiber communication. (b) FPGA-assisted photonic RC platform toward 
general AI application.
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communication capacity. When we use the photonic 
ANN including RC as the signal processor for such 
application, we can outsource the computational 
costs of a DSP to the photonic processor [6]. We are 
also studying a method for drastically simplifying the 
coherent receiver configuration by using photonic RC 
[7].

We are also considering the application of photonic 
RC to more general machine learning tasks. For such 
application, it is important to develop the hardware/
software interface between photonic RC and a stan-
dard computation device such as a central processing 
unit (CPU). Therefore, we built a test platform of 
photonic RC using a field-programmable gate array 
(FPGA)-based hardware interface and Python-based 
software stack (Fig. 3(b)). The user can drive the 
optical RC system like standard computation hard-
ware using a standard programming language 
(Python/Pytorch). We have also experimentally con-
firmed its superior performance [8]. 

4.   Toward improving performance of 
photonic RC

To further improve the processing performance of 
photonic RC, it is essential to improve and harness 
the functionalities of photonic devices. For example, 
nonlinear optical effects should be more positively 
exploited for optical implementation of neurons, 

while in conventional optical communication they 
have been intentionally suppressed due to undesir-
able signal distortion. However, it is difficult for sili-
ca-based PLCs to implement such nonlinear func-
tionalities; thus, in the above-explained physical 
implementation, the nonlinear functionality was 
implemented opto-electronically, necessitating opto-
electronic conversion.

Photonic devices based on III-V semiconductors, 
such as an optical amplifier, can be used as all-optical 
nonlinear elements. By heterogeneously integrating 
such III-V devices on silicon photonics, nonlinear 
activation can be implemented all-optically even on 
photonic integrated circuits (PICs). To this end, we 
used our recently developed III-V semiconductor 
optical amplifier (SOA) on silicon shown in Fig. 4(a) 
to implement an all-optical nonlinear reservoir. We 
then experimentally evaluated its processing perfor-
mance via a nonlinear benchmark task, and it was 
shown that the obtained performance was as good as 
those of typical RC with optoelectronic nonlinearity 
[9]. On the basis of this achievement, we are consid-
ering integrating such nonlinear functionalities on 
PICs toward further performance improvement of 
photonic RC.

In addition to the optical nonlinear implementation, 
large-scale optical integration of neurons is essential. 
Although the state-of-the-art ANN requires about 10 
billion weight parameters, it is currently difficult to 

Fig. 4.    (a) All-optical implementation of nonlinear functionality by an SOA on silicon. (b) Schematic of wave-equation-based 
neural network.
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implement such a large-scale model with an optical 
ANN or RC system. The scalability of a photonic 
ANN is basically limited by the size of optical gate 
element shown in Fig. 1(a). As its typical size is about 
100 μm square, it is difficult to implement the large-
scale state-of-the-art ANN into standard optical cir-
cuits with a realistic footprint. We previously pro-
posed a framework that uses lightwave propagation 
as a neural network, as shown in Fig. 4(b) [10]. In this 
framework, we can consider the distribution of the 
refractive index in the optical circuit as the weight of 
the neural network. Since the refractive-index distri-
bution can be controlled to 1-μm2 pixel size, we can 
achieve large-scale implementation of an optical 
ANN and RC about 1 million times that of the con-
ventional method. We confirmed that the perfor-
mance of the proposed wave-equation-based neural 
network is comparable to one for the state-of-the-art 
ANN. By using such new processing methods, we are 
now developing a photonic computation platform 
toward future ultrafast information processing.

5.   Summary

We gave an overview of recent developments in our 
photonic implementation of a special type of neural 
network called RC. By using the nature of light, pho-
tonic RC can achieve high-speed, low-power parallel 
computing beyond the conventional electronic pro-
cessor. We also introduced its potential application 
and performance improvement. In spite of the attrac-
tive features of photonic computation, the re-inven-
tion of the computer using photonic technology is 
still not easy. We will continue to further conduct 
research on a future photonic computing platform by 
considering the entire computing system and algo-
rithms beyond device-level approaches.
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