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1.   Mathematics and mathematical research

The purpose of mathematical research is to enrich 
mathematics by solving unsolved problems and dis-
covering new problems, as well as by developing new 
mathematical visions and theories that can be applied 
to solutions of many problems. Mathematical 
research also gives rise to applications that are not 
immediately apparent. For instance, Riemannian 
geometry, developed in tandem with physicists, is 
largely independent from applications and is pure 
mathematics. It is now used, via Einstein’s theory of 
general relativity, in making GPS (Global Positioning 
System) highly effective. Using the example of 
“research on quantum models and number theory 
from the viewpoint of symmetry” I describe my 
research motivation, objectives and results, and 
future goals based on them. The models mentioned in 
this article are the non-commutative harmonic oscil-
lator (NCHO) [1], quantum Rabi model (QRM), and 
asymmetric QRM (AQRM) [2, 3].

Mathematics is, in part, an endeavor to understand, 
in a unified manner, facts that appear to be far apart, 
which sometimes takes quite long time. For example, 

there is the application of the discovery in ancient 
Greece of the infinity of prime numbers and unique-
ness of prime factorization to today’s public key 
cryptography. It took more than 2500 years to under-
stand that mathematical discoveries can be used to 
maintain secrecy. Also, the structure of the universe is 
gradually being revealed through non-Euclidean 
geometry and group theory, which arose out of the 
human mind. We now know that economic phenom-
ena and the movement of pollen can be understood in 
the same way since they are due to the mathematical 
description of Brownian motion, i.e., the develop-
ment of stochastic analysis. In fact, there is a special 
value in the clarification of unquestionable affinities 
between subjects that have long been believed to be 
unrelated to each other. According to Henri Poincaré, 
mathematics is the art of identification. As Shin-Ichi-
ro Tomonaga*1 wrote: “What has worked well is 
experiment, demonstration/proof, and abstraction 
through mathematics. Abstraction makes it very  
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universal. These are the great strengths of physics.” 
Mathematical theorems, however, are not invented 
but discovered. This becomes clear from Kunihiko 
Kodaira’s view*2 that mathematical research is, using 
paper and pencil, to dig out mathematical truths that 
do exist independent from human minds but are hid-
den.

The symmetry in the title refers to the actions of 
groups. We may recall the congruence transformation 
groups of Euclidean planes and spaces and the crys-
tallographic groups familiar from physics and chem-
istry. Group theory was founded by Évariste Galois, 
who died in a duel at the age of 20. Before Galois, 
there were formulas for roots of quadratic, cubic, and 
quartic equations, and there were efforts to find those 
for quintic equations. However, what Galois did was 
to consider the entirety of the substitutions of the 
roots of an equation (the permutation group) and 
found from its structure that there is in general no root 
formula that uses the usual algebraic operations 
(addition, subtraction, multiplication, division) and 
application of radicals (square roots, cube roots, etc.) 
to coefficients of a polynomial when the equation is 
of fifth degree or higher*3. This is a major paradigm 
shift. What is the structure? It is related to the strength 
of the noncommutativity of the group. There is a large 
difference between putting on a suit after putting on a 
shirt and putting on a shirt after putting on a suit. I 
hope this gives an idea of non-commutative opera-
tions (actions).

2.   NCHO

Quantum harmonic oscillators are fundamental in 
quantum theory. Their energies (eigenvalues) are 
given as half-integers in the standard normalization, 
and the corresponding eigenstates are Hermitian 
functions, i.e., given essentially by the Hermite poly-

nomials times e− x2

2 . A clean description of this can be 

obtained from the representation theory*4 of the 
three-dimensional Lie algebra sl2(R) consisting of 2 
× 2 matrices with trace 0. The sl2(R) captures the 
infinitesimal action of the Lie group SL2(R) formed 
by all real 2 × 2 matrices with determinant 1. Lie 
group theory originated from the work of Sophus Lie, 
who was impressed by the Galois theory of algebraic 
equations and wanted to construct a sort of Galois 
theory for algebraic differential equations. Lie groups 
are groups as the name implies and geometric objects 
called manifolds. In the geometric context, sl2(R) is 
considered as the tangent space of SL2(R) at the iden-

tity element of the group. 
The Hermite functions form a basis of the Hilbert 

space L2(R) of square integrable functions on the real 
line. Many special functions, such as Hermite func-
tions, Bessel functions, and Jacobi polynomials, are 
obtained by specializing one of the parameters a, b, 
or c of the Gaussian hypergeometric function F(a, b, 
c; x) to integer values, etc. The differential equation 
(Gaussian ordinary differential equation (ODE)) sat-
isfied by F(a, b, c; x) has three regular singular points 
(e.g., 0, 1, ∞). The family of Gaussian hypergeomet-
ric functions is indispensable to the number theory of 
elliptic curves, which has been the flower of mathe-
matics since the 19th century. In representation theo-
ry, however, special functions derived from Gaussian 
hypergeometric functions and its multivariable ver-
sions can be understood essentially as matrix ele-
ments of representations of Lie groups. I will now 
turn our attention to the following.

(1)  The eigenvalues of (quantum) harmonic  

oscillators H = a†a + 1
2

, where a and a† are 

*2 Kunihiko Kodaira was the first Japanese recipient of the Fields 
Medal. The K3 surface, an important algebraic surface, was 
named by Andre Weil after three algebraic geometers (Kummer, 
Kaehler, Kodaira) and the then unexplored mountain K2. In the 
sixth night of Soseki Natsume’s short story “Ten Nights of 
Dreams,” there is a description of Unkei (a Japanese sculptor dur-
ing the Kamakura period; 1150–1223) carving a statue of Nioh 
(the guardian gods of a temple gate) at the gate of Gokokuji Tem-
ple. One of the observers caught sight of Unkei and said, “He is 
not carving, he is just digging out the Nioh,” which was original-
ly buried in the wood. This is what Kodaira used to explain. 
Mathematics, which guarantees the reproducibility essential to 
science through rigorous proofs, is not a natural science that 
deals with physical nature, but rather a science that works toward 
the elucidation of mathematical nature.

*3 This is the beginning of Galois theory. Many mathematicians 
have become mathematicians because they were exposed to Galois 
theory. Although we now call it a “solution formula” for quadratic 
equations in Japan, it used to be called a “root formula,” since a 
quadratic equation is one of various equations. However, I would 
like to use “root” with a special meaning because it is indeed a 
root which has broadened the world of mathematics.

*4 Representation theory is said to be the study of symmetry. It is at 
the intersection of algebra, geometry, and analysis, and is indis-
pensable in mathematics that focuses on treating symmetry. In 
representation theory, each group element is represented by a lin-
ear transformation acting on a certain vector space (generally in-
finite dimensional) and the group product corresponds to compo-
sition of these transformations. We use the Weil representation 
(sometimes called the oscillator representation), the representa-

tion of sl2 (R) given by the multiplication 1
2

x2, the differential 

operator − 1
2

 d2

dx2, and Euler’s order operator x d
dx

 + 1
2

. (For an 

introduction to the Weil representation, see R. Howe and E-C. 
Tan, “Non-Abelian Harmonic Analysis: Applications of SL(2, R),” 
Springer, 1992.)
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respectively the creation and annihilation 
operators subjecting [a†, a] = 1, are half-inte-
gers. Therefore, the spectral zeta function*5 of 
the harmonic oscillator determined from the 
eigenvalues essentially coincides with the 
Riemann zeta function ζ(s)*6.

(2)  The symmetry of SL2(R) remains in the world 
of Gaussian hypergeometric functions. For 
instance, the matrix elements of representa-
tions of SL2(R) and, almost equivalently, the 
solution of the SL2(R)-invariant differential 
equation all can be expressed essentially by 
Gaussian hypergeometric functions. 

The group SL2(R) is behind (1) and (2) above. To 
explore the wider world, we need to weaken the sym-
metry. The only noncommutative property of har-
monic oscillators is the canonical commutation rela-
tion (CCR) controlled by sl2(R)*7. The NCHO*8, 
which defines a system of ODEs, with two parame-
ters α and β, adds matrix noncommutativity. The 
name comes from this noncommutativity. Of course, 
it would not be rational to define it in an arbitrary 
manner. From expected physical applications and 
corresponding mathematically reasonable consider-
ation, we thought that it should be at least required 
that the Hamiltonian Q of the NCHO have only real 
discrete eigenvalues and that it be kept a sufficiently 
weak symmetry to allow the harmonic oscillator to be 
recovered when α = β. The former requires that Q be 
a positive Hermitian operator (i.e., self-adjoint opera-
tor). The latter is that the spectral zeta function ζQ(s) 
of Q be a good generalization of ζ(s) though neither 
a functional equation nor Euler product may be 
expected [4].

The convergence region of the defining series of 
ζ(s) is only in the half-plane, while ζ(s) has analytic 
continuation to the whole plane. The Riemann 
Hypothesis*9 asserts that the real part of an imaginary 

number s with ζ(s) = 0 is always 1
2

. There are two 

analogues of the Riemann Hypothesis at the top (and 
among the best-known achievements) of 20th century 
mathematics. One is the Weil Conjecture for the con-
gruent zeta function and the other is the Selberg zeta 
function for the prime geodesic distribution. Both 
conjectures were settled by the fact that each zeta 
function has a determinant expression in terms of 
suitable Hermitian operators*10. The study of a pos-
sible determinantal expression of ζ(s) is also impor-
tant in the attack on the original Riemann Hypothesis.

3.   QRM and NCHO

Isidor Isaac Rabi described the interaction of clas-
sical light with atomic quantum states in 1936. In 
1963, Edwin Jaynes and Fred Cummings quantized 
light as well and defined the QRM and its rotating 
wave approximation, now known as the Jaynes-
Cummings model. However, while the integrability 
of the QRM was unknown, the Jaynes-Cummings 
model was useful because of the existence of continu-
ous invariants, making the theoretical treatment easy, 
and suitability to experiments if the light-matter cou-
pling is very weak, roughly a fraction 10−6 of the 
mode frequency*11. 

However, with the possibility of developing a quan-
tum computer on circuit quantum electrodynamics 
(QED) platforms, the weak coupling approximation 
is no longer justified, and one must use the QRM in 
the ultra-strong coupling regime. In 2011, Daniel 
Braak [2] demonstrated the integrability of the QRM, 
and research on the periphery of the QRM has 
advanced rapidly since. In fact, the experimental 
measurement results [5] using superconducting  

*5 The spectral zeta function of an operator with positive eigenval-
ues λ1≦λ2≦λ3≦ …, where the multiplicity of the eigenvalue is 
uniformly bounded, is defined by the Dirichlet series λ1

−s+ 
λ2

−s+λ3
−s+....

*6 ζ(s): = 1+2−s+3−s+4−s+5−s+…= (1–2−s)−1×(1–3−s)−1×(1–5−s)−1 

×(1–7−s)−1×(1–11−s)−1 × … (Euler’s product) for a complex num-
ber s, the real part of which is greater than 1. The spectral zeta 

function is in fact identified with (2s − 1)ζ(s).

*7 Define h = a†a + 1
2

, e+ = 1
2

a†2
 and e− = − 1

2
a2, then the triplet {h, 

e+, e−} forms the Lie algebra sl2(R), that is, the commutation re-

lations [h, e±] = ±2e± and [e+, e−] = h hold. Here h = 2H + 1
2

 for 

the Hamiltonian of harmonic oscillator H = 1
2

a†a.

*8 The Hamiltonian Q of the NCHO is of the form Q := 
α     0
0    β( ) 

(− 1
2

 d2

dx2 + 1
2

 x2) + 0   −1
1  0( ) (x d

dx
 + 1

2 ), where α  and β  are posi-

tive and αβ  > 1. The condition on α  and β  guarantees that Q has 
only positive and discrete eigenvalues with uniformly bounded 
multiplicity.

*9 It is still unsolved more than 160 years after being stated by Rie-
mann (1859). This conjecture, which has been challenged by 
many geniuses, is equivalent to the ultimate distribution of 
primes, as shown in 1901 by Helge von Koch. Koch is famous 
for the Koch snowflake/curve, after whom it is named.

*10 The congruence determined for smooth algebraic manifolds and 
schemes over finite fields was positively solved in the case of 
zeta functions by the determinantal expression of what is called 
the Frobenius operator, and in the case of Selberg zeta functions 
by the Laplacian, the (unique up to a constant) invariant differen-
tial operator on the complex upper half-plane.

*11 The Nobel Prize in Physics 2012 awarded to Serge Haroche and 
David J. Wineland for their groundbreaking experimental method 
for the measurement and manipulation of quantum systems 
seems to be at the center of this trend.
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artificial atoms were consistent with the theory of the 
QRM and its generalization, the AQRM (see also 
[6]). 

The NCHO has expanded the world from Gauss’s 
as expected. In fact, the eigenvalue problem of the 
NCHO was found to be equivalent to the existence of 
holomorphic solution of the Heun ODE*12 in the 
complex region containing 0, 1, and not including αβ. 
This fact was discovered by Hiroyuki Ochiai [7] and 
fully understood 15 years later [8]. The (A)QRM also 
has a Heun picture [2]. However, unlike the NCHO, 
it is a confluent Heun differential equation. Neverthe-
less, by merging the two singularities as αβ → ∞, a 
confluent Heun picture of the QRM can be obtained 
from the Heun picture of the NCHO [8]. In other 
words, the NCHO can be considered as a covering 
model of the QRM*13 (Fig. 1, the NCHO is a covering 
model of the QRM).

Quantization is discretization and passing from a 
commutative world to a non-commutative world. The 
former is the original arena of number theory. In fact, 
the special values of ζQ(s) in the NCHO shows rich 
number theory as I explain below. For instance, as to 
the special values of the spectral zeta function of the 
harmonic oscillator, essentially given by ζ(s), there is 
the old Basel problem to determine the value of the 

infinite series 1 + 1
4

 + 1
9

 + 1
16

 + 1
25

 + …*14, which was 

solved by Euler. The even integer values of ζ(s) are 
generally expressed in terms of powers of π and ratio-
nal numbers. However, the value and properties of 
ζ(s) at odd points remained unknown for more than 
300 years until Roger Apéry’s proof that ζ(3) is irra-
tional in 1978. The best result on irrationality is still 
the theorem that at least one of ζ(5), ζ(7), ζ(9), or 
ζ(11) is an irrational number. However, the research 
on special values is a deep problem in modern math-
ematics, such as the geometric conjecture on special 
values of various zeta functions by Pierre Deligne*15 
who solved the Weil Conjecture using Grothendieck’s 
arithmetic geometry, and the Birch-Swinnerton-Dyer 

Fig. 1.   NCHO & QRM.

NCHO is a covering model of QRM.

Courtesy of APS/Alan Stonebraker (2011)

Light-matter interaction
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*12 The Heun equation is a second-order ODE of Fuchsian type with 
four fixed singular points, e.g., (0, 1, t, ∞). Unlike Gaussian hy-
pergeometric functions, there are aspects of its mathematical 
structure that need to be clarified, but they appear in the descrip-
tion of various physical phenomena. The Gaussian hypergeomet-
ric equation can be considered a degenerate case of the Heun 
equation. This is the first meaning for expanding the world from 
Gauss’s. 

*13 This is also true for the AQRM by adding an appropriate shifted 
(biased) term to the NCHO.

*14 In terms of the special value of ζ (s), 1+ 1
4

 + 1
9

 + 1
16

 + 1
25

 + … = 

ζ (2) = π
2

6
. The appearance of π was a great surprise.

*15 Fields Medal 1978.
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conjecture on special values at the central point of 
L-functions (relatives of zeta) defined from elliptic 
curves and its generalization by Bloch, Beilinson, and 
Kato.

Apéry used a sequence of rational numbers, now 
called the Apéry numbers, to prove the impossibility 
that ζ(3) is rational. Frits Beukers took up the chal-
lenge of finding out why and further proving irratio-
nality and developed a brilliant study of elliptic 
curves, K3 surfaces, and automorphic forms behind 
the proof of the irrationality [9]. As a result, he 
showed remarkable congruence relations of the 
Apéry numbers, which have become the subject of 
research in algebraic number theory. Surprisingly, the 
special values ζQ(2) and ζQ(3) for the NCHO also 
yield sequences of numbers with properties like those 
of the Apéry numbers [10, 11, 12]. Elliptic curves and 
automorphic forms underlie these properties, and 
when s = 4, even automorphic integrals*16, which 
generalize the notion of automorphic forms, appear 
[10] via certain nearly holomorphic automorphic 
forms initially studied by Goro Shimura*17. The next 
development will be the study of a wider range/class 
of automorphic forms (also related to the Langlands 
program, which is extremely important in mathemat-
ics [13]).

4.   Spectra of the AQRM and hidden symmetries

The importance of the partition function (weighted 
sum of states) in statistical mechanics is that it 
encodes the time evolution of the system. Knowing 
the exact behavior of a quantum system during a long 
period is of utmost importance to any task in quantum 
computing. Purely numerical approaches are severely 
limited due to the accumulation of rounding errors in 
the long-time limit. Therefore, it is necessary to 
derive analytical formulas for its heat kernel and par-
tition function. In fact, the partition function and 
spectral zeta function have a one-to-one correspon-
dence through the Mellin integral transform. How-
ever, obtaining these analytical formulas was consid-
ered extremely difficult. Physicists use a highly intui-
tive form of expression called Feynman path integral 
to carry out various asymptotic or approximate (as 
well as precise) calculations to gain a better under-
standing of the physical system of interest. The trans-
lation invariant measure and integral on the space of 
paths cannot be treated mathematically in a rigorous 
manner, except in some special cases. Of course, 
various studies are still ongoing to understand it. I, 
together with Reyes-Bustos, have attempted to derive 

a heat kernel for the (A)QRM*18. The method, which 
has been successfully applied [14], is based on the 
action of the symmetric group 𝔖m of the mth order on 
Z2

m(m = 1,2,...), the Fourier transform on Z2
m*19, and 

graph theory, where Z2 is Z/2Z or the field of two ele-
ments F2 = {0,1}. The resulting analytic formula is 
practically given by the series over non-negative inte-
gers m for integrals over m-simplex (an m-fold inte-
gral) of elementary functions given by products and 
quotients of exponential functions. It can also be 
interpreted as the infinite sum (integral) of the orbit 
integrals of 𝔖∞ over the entire equivalence class by 
the infinite symmetric group 𝔖∞ of discrete paths 
connecting 0 and ∞ (Fig. 2, Discrete paths and infi-
nite symmetry groups (Geometric Interpretation)). 
From a representation theoretic point of view, the 
action of 𝔖∞ on Z2

∞ corresponds to a decomposition 
into the direct sum of irreducible representations 
(Fig. 3 (Algebraic Interpretation)). The formulas 
obtained are similar to formulas for partition func-
tions obtained for the spin-boson model or the Kondo 
model (describing magnetic impurities in non-mag-
netic host metals, named after Jun Kondo, 1930–
2022), a formally exact description of the matrix 
element of the heat kernel, and to approximate parti-
tion functions for various physical systems. For a 
general model, the (possible) existence of an infinite-
dimensional algebraic system acting on the non-
countable paths of the Feynman integrals and the 
acquisition of discrete paths as their equivalence 
analogue should also be pursued (Fig. 4, Conjecture 
on the paths of the Feynman path integral).

From the analytical formula for the heat kernel, the 
partition function is obtained, and the contour inte-
gral expression of the spectral zeta function is 
gained*20. Thus, the analytic connection to the whole 
plane is obtained, the asymptotic evaluation of the 
number of eigenvalues (Weyl’s law) follows, and we 
can start the special value study [15]. What is the 
number theory and geometric structure of the QRMs? 

*16 Also called the Eichler form.
*17 This fact means that the second reason we can expand the world 

from Gauss’s. The notion of automorphic integrals (sometimes 
called Eichler’s forms) appeared in [10] is a further reasonable 
extension of the standard one.

*18 The Trotter-Kato product formula is the starting point for the heat 
kernel derivation; it is useful to derive the Feynman path integral 
formally, or even considered as the rigorous description of the 
Feynman path integral.

*19 It is a part of the action of the oscillator representation of SL2(F2)n. 
This representation is used for the construction of quantum error 
correcting codes such as Clifford cord. 

*20 The contour integral is a path starting from the infinity point ∞, 
circling around the origin 0, and returning to ∞. 
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This is one of the most important questions in this 
area. 

The AQRM is of major importance in circuit QED 
implementations of the QRM, thus for applications to 
quantum computing. Unlike the QRM, it has no vis-
ible Z2-symmetry (parity), if the bias is not zero. 
Nevertheless, it shows characteristic spectral degen-
eracies at half-integer values of the bias parameter. In 
fact, the AQRM is degenerate if and only if the bias 
parameter (of the bias operator) of the Hamiltonian*21 
is a half-integer ℓ/2 (ℓ ∈ Z) [3, 16]. In physics, how-
ever, degeneracy is considered to indicate the exis-
tence of a symmetry [17]. Unlike classical mechan-
ics, the concept of integrability is not clear in quan-
tum mechanics [18]. However, the analogy with 
classical systems has led to the search for operators 

that commute with HAQRM but are not functions of 
HAQRM, indicating the presence of an additional con-
served quantity [19]. Inspired by this study, we [20] 
conducted a thorough analysis to completely deter-
mine the operators that are commuting with the 
HAQRM. Interestingly, the ring*22 of operators com-
muting with HAQRM, has a unique natural generator Jℓ 

*21 The AQRM Hamiltonian has the form HAQRM = a†a [photon 

field] + ∆
2

σz [two-level atom] + g(a + a†) σx [interaction term] + 

ϵσx [bias term (given by a real number)], where σ* is Pauli ma-
trix, ∆ is the energy difference of the two level atom and g the 
coupling (interaction) constant. We notice that the bias term 
given by ϵ ∈R of HQRM is zero. Note that after its proposal in [2], 
the AQRM (as it is now called) was called the “generalized” 
QRM, “biased” QRM, “driven” QRM, etc., but after [3], “asym-
metric” QRM became established.

Fig. 2.   Heat Kernel Formula – Geometrical Interpretation.
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Fig. 3.   Heat Kernel Formula – Algebraic (Group Theoretic) Interpretation.
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There is an idea (due to Ludvig Faddeev) that the construction of any irreducible representation 
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This is reminiscent of our analytical formula of the heat kernel. 
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up to a constant multiple. Moreover, the square of Jℓ 
is expressed as Jℓ

2 = pℓ (HAQRM, g, ∆), a polynomial 
in HAQRM, where pℓ is an ℓth degree polynomial. The 
equation y2 = pℓ (x; g, ∆) defines a hyperelliptic curve 
[21].

On the other hand, the degenerate eigenvalues of 

the AQRM are of the form N ± ℓ
2

 + g2 with positive 

integer N. Fixing N and ℓ, (g2, ∆2) is obtained as zeros 

of the constraint polynomial PN+ℓ
(−ℓ/2)(g2, ∆2) and  

PN
(ℓ/2)(g2, ∆2) [12]. In fact, PN

(ℓ/2)(g2, ∆2) divides  

PN+ℓ
(−ℓ/2)(g2, ∆2), and the quotient polynomial is  

Aℓ
N(g2, ∆2) (>0) [16]. It should also be noted that the 

AQRM degeneracies are, geometrically, conical 
intersection points in the three-dimensional spectral 
graph (Left of Fig. 5).

From experimental calculations, we know that 

Aℓ
N(g2, ∆2) = pℓ (N − 1

2
 + g2, g, ∆) (ℓ ≤ 6). If this holds 

in general, the expectation “hidden symmetry behind 
the degeneracy” becomes explainable concretely pro-
vided we may think of the existence of a non-trivial 
operator commuting with the Hamiltonian (which is 
in fact an involution modulo the Hamiltonian) as evi-
dence of quantum integrability*23 (Fig. 5 and Fig. 6). 
There is, however, no way to prove it, and it remains 

a conjecture [21]. However, this conjecture is very 
similar in form to a certain theorem*24 in the Dio-
phantine geometry*25 [22] in its form. Therefore, a 
clue to the proof might be found there. We also expect 
that the AQRM has a finite number of degenerate 
eigenvalues for fixed parameters g and ∆. Although it 
is still unresolved, we can find some formal similari-
ties with the Mordell Conjecture*26 in this case.

Fig. 4.   Product Formulas of Trotter-Kato Heat Kernel, Propagator.
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*22 It is an algebraic system closed in addition and multiplication ex-
cept for division, such as the whole of integers (integer ring) and 
the whole of polynomials (polynomial ring).

*23 We can define a new mathematical model that we call the shifted 
NCHO. This model gives the covering model of the AQRM by 
looking at each Heun ODE picture for the shifted NCHO and 
AQRM, respectively. Since the model keeps the apparent parity 
symmetry at the Hamiltonian level, the hidden symmetry of the 
AQRM may also be explained as the inheritance of this parity 
symmetry. 

*24 This theorem is closely related to the well-known Vojta Conjec-
ture. The Vojta Conjecture is also a higher dimensional version of 
the Mordell Conjecture and closely related to the ABC Conjec-
ture.

*25 A fundamental theme in number theory concerns the study of in-
teger and rational solutions to Diophantine equations (polynomial 
equations). This topic originated at least 3,700 years ago as docu-
mented in Babylonian clay tablets. There are interesting interac-
tions between Diophantine Geometry and several fields such as 
representation theory, algebraic geometry, topology, complex 
analysis, and mathematical logic, to mention a few, which have 
been found to be quite fruitful.
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5.   Conclusion

Let us discuss a few phrases that characterize math-
ematics. First, “All things are numbers” by Pythagoras. 
This is reminiscent of the big data and artificial intel-
ligence (AI) that dominate modern society. The 
genius Leonardo da Vinci said, “Engineering is the 
paradise of the mathematical sciences. After all, it is 
here that the fruits of mathematics are borne.” Galileo 
Galilei’s “The universe is written in mathematical 

language” is well known. Wigner’s “The unreason-
able effectiveness of mathematics in the natural sci-
ences,”*27 is a brilliant point. 

Although mathematical research is like musical 
composition in some respects, it has been difficult to 
find a mechanism to make mathematical papers play 

Fig. 5.   Clarification of the underlying fundamental reason is expected.
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*26 The conjecture that a curve with a number of holes (genus) great-
er than 1 defined on a rational number field would have only a fi-
nite number of rational points, proved by Gerd Faltings in 1983.

Fig. 6.   The degenerate eigenvalues may “know” the entire spectrum of the system.
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like music, such as reproducing a symphony from a 
score. However, the use of mathematics has emerged 
because of machine learning, AI, and other technolo-
gies. Although the motivations for research are 
diverse, including pure mathematics driven solely by 
curiosity, it now seems as if an opportunity has 
arrived for basic mathematics and applied mathemat-
ics to play a brilliant concerto. I close this article with 
the hope that a new “mathematical music” (in Japa-
nese, we may express it as  (su-gaku) meaning 
enjoining mathematics and is a homonym with  
(su-gaku) meaning the study of numbers, i.e., math-
ematics)*28.
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