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1.   Introduction

It has become commonplace to use advanced 
machine learning technology via e.g., voice com-
mands on smartphones. The future of the machine 
learning field will be learning collective intelligence 
for efficient use of individual systems (Internet of 
Things (IoT) devices, smartphones, servers, etc.). I 
believe that a possible innovation in this field will be 
optimal coordination and control of an overall system 
consisting of many IoT devices, e.g., autonomous 
vehicles on traffic networks, servers on datacenter 
networks, and power plants on energy networks. In 
this article, I introduce two research projects regard-
ing collective intelligence learning via digital twins.

2.   Signal-free mobility project

Future information and communication technology 
is expected to enable an advanced mobility society in 
which people, vehicles, and infrastructure cooperate 
with each other to provide further safety and effi-
ciency. In the Innovative Optical and Wireless Net-

work (IOWN), signal-free mobility is presented as a 
concept of this advanced mobility society. As shown 
in Fig. 1, vehicles autonomously travel streets with 
no traffic signals while communicating with each 
other to shorten the time to reach destinations without 
collisions. As the first step in achieving signal-free 
mobility, NTT Communication Science Laboratories 
is tackling the problem of traffic coordination in a 
distributed manner [1]. 

Signal-free mobility aims to predict optimal vehicle 
states to shorten travel time without collisions via 
feedback between digital twins and real vehicles. To 
achieve optimal coordination and control of a huge 
number of vehicles in real time, state transition 
should be distributed, i.e., by alternatingly repeating 
computation in each vehicle and communication 
among vehicles. Therefore, the main research topic is 
to formulate learnable digital twins to predict the 
optimal states of a complex overall system in a dis-
tributed manner. Digital twins can be modeled using 
a graph composed of vehicles (nodes shown as yel-
low vertices) and their connections (edges shown in 
green connection lines), as shown in Fig. 2. Although 
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overall traffic is a very complex system that changes 
from time to time, this graphical model can represent 
traffic as a combination of simple components, i.e., 
local state prediction of each vehicle and communica-
tion among neighboring vehicles.

Computation procedures on digital twins for traffic 
coordination is illustrated in Fig. 3. In forward propa-
gation (Fig. 3(a), left to right), time evolution of both 
optimal state transition on digital twins and feedback 

control of real vehicles is illustrated. This is com-
posed of alternating the repeating of multiple steps, 
i.e., observation-data collection (e.g., image sets of 
surrounding travel/road situations), calculation of 
local vehicle state and repulsive force to maintain 
more than a certain distance between vehicles, and 
information exchange through communications 
among neighboring vehicles. To enable real-time traf-
fic coordination, a vehicle’s state calculation can be 

Fig. 1.   Concept of signal-free mobility.

Current traffic coordination using traffic signals

Signal-free mobility (by IOWN)
Autonomous vehicles travel streets with no traffic signals while
communicating with each other to shorten the time to reach destinations
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Extracted from a video associated with IOWN announced in December 2019. 
(“Mobility by IOWN,” NTT official channel, https://www.youtube.com/watch?v=4fo_kEYrY6E)

Fig. 2.   �Graphical modeling of digital twins for traffic coordination, which alternatingly repeats state prediction into the near 
future and controls real vehicles in real time. 
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carried out in a decentralized manner. In backward 
propagation (Fig. 3(b), right to left), learnable model 
parameters in the state-transition model are sequen-
tially updated for efficient traffic coordination by 
increasing the average speed. These two flows (for-
ward and backward propagations) were first expressed 
using continuous ordinary differential equations 
(ODEs)*1, the spatially and temporally discretization 
of which resulted in a special neural network archi-
tecture (CoordiNet), as shown in Fig. 3. 

With CoordiNet, a signal-free mobility system can 
be constructed, which is composed of prediction/
control and model-training phases, as shown in 
Fig. 4. In the model-training phase, a number of traf-
fic simulations on digital twins are executed. In these 
simulations, data collection assuming various traffic 
situations is conducted by varying the number of 
vehicles and their initial positions and traveling not 
only on actual roads but also on those created in vir-
tual worlds. The model parameters for state transition 
are sequentially updated to increase the vehicle’s 
average speed. Through training via a number of traf-
fic simulations, the trained model is expected to be 
robust to unexpected road situations. Since this 
model-training phase is computationally heavy, 
model update is assumed to be executed in non-real-

time (after several hours to one day). The prediction/
control phase deploys a pre-trained model for real-
world traffic coordination. In the constructed system, 
each feedback loop between digital twins and real 
vehicles is conducted in real time (in about 0.1–0.4 s). 

Some of the results from the above traffic simula-
tions for the model-training phase are shown in 
Fig. 5. It was found that the average speed increased 
as the traffic simulation was repeated with Coordi-
Net. When the speed is normalized to set its maxi-
mum value to 1.0, the average speed was increased up 
to 0.90 after training compared with 0.64 before 
training using randomly initialized hyper-parameters. 
This result indicates that data collection via traffic 
simulations is efficient for learning a traffic-coordi-
nation model. I also examined the performance of a 
conventional neural network (graph attention net-
work (GAT)*2) that does not strictly restrict vehicle 

Fig. 3.   �CoordiNet that represents time-series processing for traffic coordination via digital twins. (a) Forward propagation 
(from left to right): Optimal states of vehicles can be predicted through feedback between digital twins and real 
vehicles. (b) Backward propagation (from right to left): Model parameters in state transition model are sequentially 
optimized for efficient traffic coordination.
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*1	 ODE: Continuous physical phenomena such as fluids and weath-
er are often represented by ODEs. In this report, complex phe-
nomena in traffic coordination are represented using an ODE 
such that real-world systems and digital twins can interact with 
each other.

*2	 GAT: A graph neural network that updates state variables while 
adaptively updating the weights between connected nodes. Note 
that GAT has not been proposed for application to traffic coordi-
nation.
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Fig. 4.   Signal-free mobility system composed of prediction/control phase (left) and model-training phase (right).
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Fig. 5.   Experimental evaluation of model-training phase.
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states to be collision-free and a traffic simulator 
(Simulation of Urban MObility (SUMO)*3) for com-
parison. Using the GAT resulted in collisions from 
the start of the learning rounds, and the average speed 
could not be stably increased. When using SUMO, 
however, no collisions occurred, but vehicles would 
frequently stop in front of intersections, i.e., the aver-
age speed could not be increased.  

To execute the prediction/control phase in real time 
using a trained traffic-coordination model (Fig. 4), a 
system to control miniature autonomous vehicles was 
constructed, as shown in Fig. 6. For each miniature 
autonomous vehicle, a pair of ultrasonic beacons for 
measuring position, graphics processing unit (GPU) 
for local computation, Wi-Fi communication module, 
and pair of motors to rotate wheels were implement-
ed. In this system, each vehicle communicated with 
neighboring vehicles via a server and Wi-Fi, and 
vehicle states were predicted on the digital twins to 
shorten average travel time without collisions. 
Around 10–20 vehicles were controllable in real time 
(about 0.1–0.4-s intervals). Using this system, I 
experimentally confirmed that the vehicles could 
travel without collisions as the state predicted by the 
traffic-coordination digital twins.

3.   Asynchronous decentralized federated 
learning project

In the signal-free mobility project, the system is 
implemented to learn a traffic-coordination model by 
aggregating data sets obtained via traffic simulators 
on a single server. However, its collective intelligence 
learning phase may be shifted to be a distributed man-

ner. 
The asynchronous decentralized federated learning 

project aims to train model parameters (e.g., in neural 
networks) under a massive network graph obeying a 
large number of nodes and edges. A pioneering study 
proposed FedAvg [2], which exchanges model 
parameters and averages them between connected 
nodes to make a consensus with each other. In con-
trast, the Edge-Consensus Learning (ECL) algorithm 
I proposed and its extensions [3, 4, 5] (i) make an 
arbitrary graph topology available, (ii) are robust to 
statistical data bias among nodes by imposing con-
straints on model consensus, and (iii) enable asyn-
chronous decentralized communications, as shown in 
Fig. 7.

4.   Future plans

I will investigate the mathematical foundation for 
learning collective intelligence and increase the num-
ber of application examples. My aim is to contribute 
to the early adoption of Digital Twin Computing into 
society through optimal control of huge systems.

Fig. 6.   Experiments on real-time traffic coordination using miniature autonomous vehicles.
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*3	 SUMO: An open-source traffic simulator used worldwide by re-
searchers in the intelligent transport systems field. It can be 
downloaded at https://www.eclipse.org/sumo/.
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Fig. 7.   Problem settings in asynchronous decentralized federated learning.
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