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1.   Quantum error mitigation

A pressing challenge for quantum computers is 
suppressing the effects of computational errors due to 
the loss of quantum coherence. Quantum error miti-
gation (QEM) is a relatively recent concept proposed 
for mitigating computation errors while keeping the 
hardware load to a minimum [1]. QEM is often com-
pared with quantum error correction (QEC). In QEC, 
multiple physical quantum bits (qubits) are used to 
represent a single logical qubit. This redundancy is 
used to detect computational errors, and errors are 
actively corrected on the basis of this information. 
However, because the number of qubits in quantum 
hardware is at most several hundred qubits, QEC 
reduces the effective number of qubits. QEC thus 
cannot make the best of the computation power of 
near-term quantum devices. Therefore, QEM was 
introduced as a set of methods that can reduce com-
putational errors without reducing the effective num-
ber of qubits by avoiding the use of redundancy. 
Progress related to QEM implementation has been 
remarkable. In a recent paper, IBM claimed the 
world’s first accomplishment of a practical task with 
a 127-qubit quantum processor [2]. This break-
through shows that QEM has an extremely useful 
role. The exponential-extrapolation error mitigation 

method I proposed [3] also shows extremely high 
performance. There are a variety of other QEM meth-
ods. In QEM, the correct result of a calculation is 
generally estimated by post-processing the output 
from multiple quantum circuits using a classical com-
puter. A conceptual diagram of QEM is shown in 
Fig. 1(a).

QEM cannot fundamentally suppress errors in the 
quantum state. However, it can mitigate errors in the 
expectation values of observables. Figure 1(b) illus-
trates the function of QEM. Because many quantum 
algorithms that are expected to be implemented in 
current quantum computers and first-generation 
fault-tolerant quantum computation use the expecta-
tion values of observables, QEM is considered to be 
highly useful. It should be noted that the cost of QEM 
is an increase in measurement shots; an exponentially 
greater number of measurements in accordance with 
the frequency of computational errors in quantum 
hardware is required. Intuitively, this is because QEM 
has the effect of amplifying the expectation values of 
observables that generally decays exponentially with 
respect to the number of quantum gates and the gate 
error rate. The variance of calculation results thus 
increases exponentially. Mathematical proof related 
to the exponential increase in the number of measure-
ments have been shown in several papers, including 
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that by our research group [4], using a quantum 
information-theoretic approach. In the following sec-
tion, I discuss the major QEM methods: extrapolation 
[3, 5], quasi-probability (also called probabilistic 
error cancellation [3, 5]), virtual distillation [6], and 
subspace expansion [7].

I then describe our research groups’ latest achieve-
ments, a quantum sensing method incorporating 
QEM [8] and quite a general unified framework of 
QEM called the generalized quantum subspace 
expansion method [9]. For readers who wish to sim-
ply have an overview of QEM, it is sufficient to 
understand the extrapolation methods. For those who 
wish to learn more, I encourage you to read the other 
sections. Referring to the review paper I wrote [1] 
when needed will provide an in-depth understanding 
of QEM. 

1.1   Extrapolation methods
As the name suggests, extrapolation methods esti-

mate the ideal error-free calculation result by extrap-
olating multiple measurement results [3, 5]. They are 
simple yet powerful methods used in many experi-
ments. An overview of extrapolation methods is 
shown in Fig. 2. The horizontal axis shows the error 
rate and the vertical axis shows the result (the expec-

tation value of an observable). Of course, we cannot 
freely reduce the error rate, but it is relatively easy to 
increase calculation errors. For example, it is possible 
to increase the frequency of errors by slowly carrying 
out gate operations or by carrying out extra gate 
operations. By extrapolating the original calculation 
result and calculation results associated with increased 
error rates, the ideal error-free calculation result is 
then estimated. When extrapolation methods were 
first proposed, they used Richardson extrapolation 
with linear and polynomial functions [5]. Observing 
that calculation results generally decay exponentially 
with the frequency of calculation errors, I proposed 
extrapolation using an exponential function [3]. The 
exponential extrapolation showed extremely good 
performance in an actual experiment [2]. However, 
extrapolation methods cannot guarantee computation 
accuracy and can be said to be relatively heuristic.

The number of measurements, a cost factor in 
QEM, can be easily understood with extrapolation 
methods. Considering linear extrapolation as an 
example, for calculation error rate ε0, we express the 
experimentally obtained average value of the observ-
able as 〈O(ε0)〉 and that with twice the error rate as 
〈O(2ε0)〉. From extrapolation, the error-mitigated 
result can be written as Oest = 2〈O(ε0)〉 − 〈O(2ε0)〉. 

Fig. 1.   Conceptual diagram of QEM.
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When calculating variance, if no correlation is 
assumed between 〈O(ε0)〉 and 〈O(2ε0)〉, we obtain 
Var[Oest] = 4Var[〈O(ε0)〉] + Var[〈O(2ε0)〉]. This shows 
that the variance is amplified after applying QEM and 
that more measurements are needed to obtain the cor-
rect calculation result.

1.2   Quasi-probability method
The quasi-probability method counteracts the effect 

of gate noise by effectively constructing the inverse 
of the noise based on the noise model obtained 
through noise characterization techniques, such as 
process tomography or gate set tomography [3, 5]. 
We denote the quantum process corresponding to the 
noise as Ԑ (it may be easier to think of it as the quan-
tum mechanical version of a transition matrix) and its 
inverse map as Ԑ −1. While Ԑ −1 can be mathematically 
constructed, it is not generally a “physical process” 
and cannot be directly operated on a quantum com-
puter. By constructing Ԑ −1 by a set of operations {Bk}k 
for QEM that we can execute with fewer calculation 
errors, we can decompose Ԑ −1 as Ԑ −1 = ∑k qk Bk. Usu-
ally, we assume that {Bk}k are single qubit operations. 

For example, when we consider the depolarizing 

noise of error probability p to be ԐD(ρ) = (1 − 3
4  p)ρ + 

p
4 (XρX + YρY + ZρZ), its inverse map is Ԑ D

−1(ρ) = (1 + 
3p

4(1−p) )ρ − p
4(1−p) (XρX + YρY + ZρZ). Here, q0 = (1 + 

3p
4(1−p) ), q1 = q2 = q3 = p

4(1−p) , B0(ρ) = ρ, B1(ρ) = XρX, 

B2(ρ) = YρY, B3(ρ) = ZρZ. Because ∑k qk = 1, and Ԑ −1 
is generally not a physical process resulting in qk 
being a quasi-probability that can be negative, this 
method is called the quasi-probability method. A 
negative probability cannot be directly implemented, 
but the expected value “same as the case of sampling 
using negative probability” can be effectively calcu-
lated by post-processing of the measurement results. 
Consider a simple 1-qubit system as an example, 
which is conceptually shown in Fig. 3(a). The ideal 
quantum state is ρideal = U |0〉〈0|U†. However, because 
of depolarizing noise ԐD, the actual quantum state is 
ρnoisy = ԐD (ρideal). Expressing the observable to be 
measured as O, because the noiseless expectation 
value is 〈Oideal〉 = q0Tr[ρnoisyO] + q1Tr[XρnoisyXO] + 
q2Tr[YρnoisyYO] + q3Tr[ZρnoisyZO], the expectation 
value of the observable can be measured by adding 
together the measurement outcomes of quantum 
states ρnoisy, XρnoisyX, YρnoisyY and ZρnoisyZ with the 
appropriate weight of quasi-probability. Even if a 
quasi-probability with a negative value exists, a non-
physical inverse map can be constructed by multiply-
ing a negative sign to measurement outcomes and 
performing post-processing.

It is important to implement the inverse map in a 
quantum circuit with multiple qubits for practical 
purposes. Consider when a quasi-probability method 
is applied to the noise Ԑl (l = 1,2,…NG, where NG is 
the number of gates) of multiple quantum gates. The 
conceptual diagram is shown in Fig. 3(b). We  

Fig. 2.   Overview of extrapolation methods.
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construct an inverse map for each error: Ԑ l
−1 = ∑k qk

(l) 

Bk = γ(l) ∑k pk
(l) sgn(qk

(l))Bk (∑k pk
(l) = 1, pk

(l) > 0, γ(l) = 

∑k |qk
(l)| > 1, sgn(qk

(l)) = qk
(l)/|qk

(l)|, where γ(l) is the cost 

coefficient. After each quantum gate (or before, 
depending on the formulation), operation Bk is gener-
ated with probability pk

(l), and the products of sign 

∏NG
l=1

 sgn(qk
(l)) and cost coefficient γtot = ∏NG

l=1
 γ(l) are 

multiplied to the measurement result. By repeating 
this, the average of the result gives the error-mitigat-
ed result. Because the variance of the calculated 
result is approximately amplified by γ2

tot compared 
with the case without error mitigation, an exponen-
tially large number of measurements according to the 
number of gates is required.

Although a suitable error-characterization method 
has not been proposed when the quasi-probability 
was first proposed, I found that gate-set tomography 
is an efficient error-characterization method for this 
method [3]. I also discovered a set of operations {Bk}k 
for QEM that allows for removal of arbitrary compu-
tational errors [3]. I have also shown that the quasi-
probability method can be applied not only to gate 
models but also temporally continuous noise models 
such as those described by the Lindblad master equa-

tion d
dt  ρ = −i[H, ρ] + ∑k(2 Lk ρLk

† − Lk
†Lkρ −ρLk

†Lk), 

extending QEM to analog quantum systems [10].

1.3   Virtual distillation method
Virtual distillation executes QEM by preparing 

multiple copies of a noisy quantum state ρnoisy, exe-
cuting entanglement measurements between them 
and post-processing the results using a classical com-
puter. This enables us to simulate the error-suppressed 
quantum state as if we distill a noiseless quantum [6]. 
An example of the “classical” counterpart of this 
method is as follows: we ask several students to solve 
the same problem, e.g., elementary school students 
who often get erroneous results for simple arithmetic 
problems. Only when all the calculation results are 
the same is the answer submitted; otherwise, the 
results are discarded (Fig. 4). The more students 
involved in calculating the result, the higher the per-
centage of the correct answer. However, the probabil-
ity of success (i.e., the probability of all students 
calculating the right answer) decreases exponentially 
with the number of students. 

With virtual distillation, we can calculate the 
expected value of the physical quantity correspond-

ing to the distilled quantum state ρvd = ρnnoisy
Tr[ρnnoisy] , where 

n is the number of copies of the noisy quantum state. 
When we have the spectral decomposition ρnoisy =  
∑k pk |ψk〉〈ψk| (p0 ≥ p1 ≥ …), it is expected that the 
eigenstate corresponding to the largest eigenvalue is 
a good approximation of the ideal quantum state 
when the noise is small. Now, as n increases, ρvd 
asymptotically approaches |ψ0〉. The contribution of 
|ψk〉 (k = 1, 2, …) is suppressed exponentially with 
respect to n. However, the number of required measure-
ments increases exponentially with n. The advantage 

Fig. 3.   Overview of the quasi-probability method.
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of this method is that it can mitigate errors with high 
accuracy if the errors are stochastic, even without 
information about the error model. However, coher-
ent errors caused by rotation errors of quantum gates 
and the insufficient expression capability due to the 
lack of depth of ansatz quantum circuits in varia-
tional quantum eigensolver cannot be mitigated with 
this method, no matter the increase in the number of 
copies.

1.4   Subspace expansion method
The subspace expansion method constructs a pro-

jector (strictly speaking, this operator does not satisfy 
the mathematical properties of a projector but is 
called one here for convenience) [7]. Consider a case 
in which the actual quantum state immediately before 
measurement differs from the ideal quantum state 
because of noise. For example, the variational quan-
tum eigenvalue solver is a method for determining 
the ground state ρG = |G〉〈G| of molecules, etc; how-
ever, the actual quantum state may be another quan-
tum state ρnoisy because of errors. If we can construct 
the projector onto the ground state PG = |G〉〈G|, an 

error-free quantum state can be obtained as PG ρnoisy PG
pG  

= ρG with pG being the projection probability (Fig. 5(a)). 
However, because |G〉 is an extremely large quantum 
state in reality, the expression of PG cannot be 
obtained in the first place, and the projection cannot 
be executed accurately. We thus seek to construct a 
projection operator (which strictly speaking, does not 
satisfy the mathematical properties of a projection 
operator but called one here for convenience) that can 

project the noisy state onto a space with the lowest 
possible energy. Using Pauli operators Pk to express 
such a projection operator as P̃ = ∑k ck Pk (where ck 
is a complex number), we optimize {ck}k using a clas-
sical computer so that the energy of the projected 

quantum state ρse = P̃ ρnoisy P̃†

p  (where p is the projec-

tion probability) can be minimized (Fig. 5(b)). What 
Pk to choose is arbitrary. Methods for constructing Pk 
from, for example, excitation operators of a mole-
cule’s spin-orbitals, have been proposed [7]. This 
method can suppress coherent errors to a certain 
extent but is known to be unsuitable for suppressing 
stochastic errors such as bit flips.

2.   NTT’s latest achievements

2.1   Application of QEM to quantum sensing
NTT has developed the world’s first framework for 

quantum sensing incorporating QEM. Quantum sens-
ing is an active area of research in the field of quan-
tum information that uses quantum states to effi-
ciently probe fields such as magnetic fields one 
wishes to measure. This is done by interacting the 
quantum states with the field followed by the readout. 
The process is repeated and the results are accumu-
lated to estimate the value of the magnetic field. What 
is important about quantum sensing is that when 
quantum entangled states are used as probes, quan-
tum advantageous scaling can be achieved depending 
on the number of qubits N. However, if the noise 
fluctuates at each time of measurement, systematic 
errors occur in the accumulated value and estimated 

Fig. 4.   Overview of virtual distillation method.
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magnetic-field value, and quantum advantages can-
not be achieved (Fig. 6(a)). Our research group has 
shown that even when noise fluctuates each time the 
quantum device is executed, virtual distillation can 
act as a “filter” that removes such noise and accu-
rately mitigates systematic errors [8]. We have also 
shown that quantum advantageous scaling can be 
restored (Fig. 6(b)).

2.2   Generalized subspace expansion method
Our research group proposed the generalized sub-

space expansion method, which is quite a general 
QEM method, which includes subspace expansion 
and virtual distillation as special cases [9]. I stated 
above that in subspace expansion, the projection 

operator P̃ = ∑k ck Pk can be optimized so that energy 
is minimized. The essence of the generalized sub-
space expansion method is extending Pk to extremely 
general operators. More specifically, quantum states 
(and more complex operators that include them) are 
used as Pk. For example, taking P0 = I, P1 = ρnoisy, the 
projected state is P̃ ρnoisy P̃† = |c0|2 ρnoisy + (c0c1* +  
c0*c1)ρ2noisy + |c1|2ρ3noisy, and the expected value of the 
observables corresponding to an error-mitigated 
quantum state expanded by a series of powers of a 
noisy quantum state can be obtained. We call this 
method the power subspace method (Fig. 5(c)). Our 
research group also proposed the fault-subspace 
method that uses the essence of extrapolation methods 
[5] in the construction of projectors. Unification of 

Fig. 5.   Overview of subspace expansion methods.
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the power subspace method and fault-subspace 
method is also possible. The generalized subspace 
expansion method inherits the advantages of both 
subspace expansion and virtual distillation methods 
and can mitigate both coherent errors and stochastic 
errors with high accuracy. Therefore, far more accu-
rate QEM is made possible compared with subspace 
expansion or virtual distillation alone.
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Fig. 6.   Effect of QEM (virtual distillation) on quantum sensing.
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