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1.   Background

Sounds in our everyday life (e.g. speech, music, 
and environmental sounds) exhibit rich patterns of 
amplitude modulation (AM) (Fig. 1). AM is a slow 
change in sound amplitude. It is one of the most 
important sound features for auditory perception. 
Different patterns of AM evoke different hearing sen-
sations such as pitch and roughness [1]. Humans can 
recognize a sound only with its AM cue [2, 3]. AM is 
often characterized by its rate (or speed) and depths 
(or magnitude) (Fig. 1, right panel). Originally, it 
referred to conveying a signal as a form of slowly 
changing amplitude, but in the context of auditory 
research, it is often used in the aforementioned sense.

Perceptual sensitivity to sound AM is considered an 
important property reflecting auditory perception 

because it quantifies the ability of the auditory system 
to detect subtle AM cues in the sound stimulus. It has 
been investigated under multiple experimental condi-
tions in several independent studies [4–7] and has 
been shown to depend on stimulus parameters such as 
the AM rate, carrier bandwidth, and sound duration. 
In the previous experiments, a modulated and non-
modulated sound are presented in succession to a 
human listener. When the listener is asked to identify 
which sound is modulated, the answer is generally 
correct when the modulated stimulus has a deep AM, 
but the discrimination is more difficult when the AM 
is shallower. Therefore, we can define an AM-detec-
tion threshold as the minimum depth required for 
discriminating a modulated sound from a non-modu-
lated one.

Understanding this stimulus-parameter dependency 
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is critical in the research of auditory perception 
because those parameters vary greatly in the sounds 
in our everyday environment and affect our sensitiv-
ity to AM cues, which in turn influences our percep-
tion. Therefore, it is important to consider the follow-
ing fundamental questions: why such a stimulus-
parameter-dependent sensitivity has emerged in the 
auditory system, and how it is actualized in our brain. 
The “why” question is scientifically important 
because it incorporates an understanding of the evo-
lutionary and developmental process (or the “origin”) 
of the auditory system. However, it requires consider-
ing the long time scale of our evolution and develop-
ment, which makes it difficult (albeit not impossible) 
to address experimentally. In such a case, computa-
tional modeling can be effective. If we assume that an 
increase in evolutionary fitness is the primary factor 
in shaping the auditory system and that better sound-
recognition performance yields better evolutionary 
fitness, we can computationally simulate this adapta-
tion process using machine-learning techniques. 
After constructing a model by training it for a bio-
logically relevant task such as sound recognition, we 

can simulate psychophysical or neurophysiological 
experiments and compare the emergent properties 
with those in the auditory system to gain insights into 
the effect of the adaptation to sound recognition on 
shaping the auditory properties. Several studies have 
been conducted along this line including ours that 
demonstrated the emergence of neuronal AM-related 
properties in an artificial neural network (NN) trained 
for sound recognition [8]. The “how” question has 
often been addressed by neuroscience, but this com-
putational paradigm should help us understand those 
experimentally elucidated mechanisms from the per-
spectives of their emergence.

2.   Simulating psychophysical experiments in a 
neural network trained for sound recognition

In our present study, we applied this paradigm to 
the AM-detection threshold [9]. This study involved 
the following two steps: constructing a computational 
model of the auditory system and simulating psycho-
physical experiments in the model (Fig. 2). We used 
an artificial NN as the computational model. The 

Fig. 1.   Examples of sound AM, shown as black lines, in dog barking, speech, and synthetic sounds.
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model architecture was almost the same as in our 
previous study [8]. We used a multi-layer (or deep) 
convolutional NN that takes a sound waveform as an 
input and outputs the estimated category of the input. 
The model parameters were adjusted to match the 
estimated categories to the true categories (Fig. 2, 
left). This process is called “training” in machine 
learning. The training objective was the classification 
of everyday sounds or of phonemes in speech sounds. 

After the training, we froze the model parameters 
and simulated psychophysical experiments (Fig. 2, 
right). We delivered a modulated or non-modulated 
stimulus to the model and measured how accurately 
the model discriminated them. Specifically, we 
attempted to estimate whether the stimulus was 
modulated from the time-averaged model activity in 
response to the stimulus. The stimulus parameters 
were the same as in psychophysical studies [4–7]. 
This enabled the direct and quantitative comparison 
of our results with those in humans. The AM-detec-
tion threshold was defined as the depth at which the 
discrimination performance was 70.7% (again, same 
as in the psychophysical studies). This threshold was 
measured in each layer in the NN. We conducted the 
same simulation in the non-trained model (i.e. the 
model with random parameter values before training 
for sound recognition).

3.   Emergent AM detection threshold in 
the model

We first quantified the similarity of the AM-detec-
tion threshold in the model and that in humans 
(Fig. 3, orange circles for the trained model, blue 
squares for the non-trained model). This comparison 
was done for each NN layer. We compared the stim-
ulus-parameter-dependent AM-detection threshold in 
an NN layer and humans in terms of their overall pat-
terns of stimulus-parameter dependency and their 

specific values. To compare their overall pattern, we 
quantified the relative similarity using the correlation 
coefficient (Fig. 3, left panel). To compare their spe-
cific values, we quantified the absolute dissimilarity 
using the root mean square deviation (Fig. 3, right 
panel). The upper layers in the trained model showed 
high similarity and low dissimilarity with humans, 
whereas the lower layers and the non-trained model 
showed low similarity and high dissimilarity. This 
indicates that the human-like detection threshold 
emerged in the upper layers as a result of training for 
sound recognition.

We then wanted to determine the essential factors 
for the emergence of the human-like detection thresh-
old in the model. Since the similarity to humans was 
largely different between trained and non-trained 
models, we hypothesized that the training procedure 
is an important factor. To test this, we trained the 
model on degraded sounds and compared the emer-
gent detection threshold with humans. We tested two 
types of degraded sounds: sounds with degraded AM 
components and those with degraded faster compo-
nents (i.e. faster change in their amplitude than AM 
components). In the latter sounds, AM components 
were preserved. The model trained on AM-degraded 
sounds did not exhibit a human-like detection thresh-
old (Fig. 3, green < and > shapes), whereas the model 
trained on AM-preserved sounds showed a detection 
threshold somewhat similar to humans (Fig. 3, red Y 
and inverse Y shapes). The results indicate that the 
AM structure in the training data is essential for the 
emergence of a human-like AM detection threshold.

Finally, to gain insights into how AM detection is 
conducted in the brain, we estimated the brain regions 
responsible for AM detection. Figure 3 indicates that 
layers around the 9th, 10th, and 11th layers exhibit 
the human-like AM detection threshold. We estimat-
ed the corresponding brain regions to these layers by 
using a method developed in our previous study for 
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Fig. 3.   Similarity and dissimilarity between the AM-detection threshold in humans and that in NN layers.



Regular Articles

83NTT Technical Review Vol. 22 No. 1 Jan. 2024

calculating the similarity between an NN layer and 
brain region in terms of neuronal AM-related proper-
ties [8]. Applying this method to the present model 
revealed that these layers were similar to the inferior 
colliculus, medial geniculate body, and auditory cor-
tex (Fig. 4), which are included in the auditory mid-
brain and higher regions. This means the 9th, 10th, 
and 11th layers would respond to AM stimuli simi-
larly to neurons in these brain regions. This suggests 
that, if we calculate the AM-detection threshold as in 
our analysis from the time-averaged neural activities 
in these brain regions, we would obtain an AM-
detection threshold similar to that observed in the 
psychophysical experiments. A human brain might 
also use time-averaged neural activities in these brain 
regions when a human listener is performing AM 
detection.

4.   Conclusions

We simulated psychophysical AM-detection exper-
iments in an NN model trained for sound recognition. 
We observed the emergence of the human-like AM 
detection threshold in the upper layers in the trained 
model, suggesting that the detection threshold in 
humans might also be a result of the adaptation of the 
auditory system to sound recognition during evolu-
tion and/or development. This provides an answer to 
the question of why the auditory system exhibits the 
present form of the AM detection threshold. We dem-
onstrated that the AM structure in the training data is 
an essential factor for the model to exhibit the human-
like detection threshold. Mapping of the NN layer 
and brain regions suggests that psychophysical AM 

detection might be a result of neural activities in the 
auditory midbrain and higher brain regions. This pro-
vides an answer to the question of how AM detection 
is performed in the auditory system.
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Fig. 4.   The similarity of neuronal AM-related properties in the NN layers and those in the auditory brain regions.
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