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1.   Introduction

Object detection for identifying and locating 
objects in images plays an important role in video 
artificial intelligence (AI) applications for edge/ter-
minals. One application is automated beyond-visual-
line-of-sight (BVLOS) drone flight. BVLOS flight 
means flying beyond the operator’s visual range and 
enables a drone to cover far greater distances. For 
BVLOS flight, a drone has to detect objects in images 
input from a mounted camera in real time for safe 
flight, especially to avoid flying directly over pass-
ersby or cars under the flight path. Another applica-
tion is camera surveillance, and the object detection 
for determining suspicious people from a crowd of 
people has to be done in a terminal to comply with 
personal-information-protection requirements, such 

as the General Data Protection Regulation (GDPR). 
Another application is road-traffic monitoring.

Object detection in high-definition video enables 
detecting a wide range of objects with a single camera 
at one time. This makes it possible to detect passersby 
and cars under the flight path from higher altitude for 
automated BVLOS drone flight and detect suspicious 
people from a greater distance for camera surveil-
lance. In a high-definition image such as full HD and 
4K, since objects near and far from the mounted cam-
era can coexist in the same image due to a wide angle 
of view, both large and small objects can be included 
in the image. Therefore, object detection in high-
definition video has to be able to detect not only large 
but also small objects with high accuracy.

Various AI inference schemes for object detection 
have been proposed, such as You Only Look Once 
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(YOLO) [1] and Single Shot MultiBox Detector 
(SSD) [2]. Such an inference scheme has a convolu-
tional neural network (CNN) that predicts object 
bounding boxes and class probabilities in a single 
evaluation. The input-layer size of a trainable CNN is 
limited to suppress the computational complexity and 
training-process difficulty. For example, the largest 
input-layer size in the standard YOLO model 
YOLOv3 is 608 × 608 pixels. Thus, even if a full HD 
image is input, the input image is shrunk to the lim-
ited input-layer size and inference is executed with 
the shrunk input image. Large objects in the input 
image can be detected, but small objects are collapsed 
and difficult to detect. Dividing the input image into 
a limited size can also be considered to prevent 
shrinking the input image [3–8], but this means large 
objects that straddle the divided images cannot be 
detected because the characteristic parts for identify-
ing objects are also divided. In other words, such 
schemes are unsuitable for object detection in high-
definition video.

We introduce high-definition AI inference technol-
ogy we previously proposed [9, 10] for solving this 
problem, with which multiple object detectors coop-
erate to detect small and large objects in high-defini-
tion images. This technology is suitable for hardware 
implementation because all object detectors can be 
executed in parallel for real-time operation. In addi-
tion, any AI inference scheme for object detection can 
be applied, and re-training for applying our technol-
ogy is not necessary.

The remainder of the article is organized as follows. 

In Section 2, we give details of our technology and 
present the results of an evaluation of the technology 
in Section 3. We conclude this article in Section 4.

2.   Our high-definition AI inference technology

2.1   Overview of our technology
Our high-definition AI inference technology [9, 10] 

enables both small and large objects to be detected in 
high-definition images through cooperation among 
multiple object detectors (Fig. 1). An input image is 
divided into images of limited size, and objects are 
detected on the basis of an inference scheme for every 
divided image. In parallel, object detection is also 
done in the whole image shrunk to a limited size to 
detect large objects that straddle the divided images. 
By combining these object-detection results, a final 
object-detection result is obtained. In other words, 
the undetected objects in the shrunk whole image are 
interpolated from the object-detection results 
obtained from the divided images. Therefore, both 
small and large objects can be detected in high-defi-
nition images.

We explain the mechanism by which high-defini-
tion object detection can be achieved with our tech-
nology by using YOLO as an example scheme. 
YOLO has a CNN for detecting objects included in 
an input image. The CNN divides the input image 
into S × S grids and predicts bounding boxes and class 
probabilities for each grid. The resolution for detect-
ing objects depends on only the grid size. Our tech-
nology reduces the grid size. Figure 2 shows an 

Fig. 1.   Our high-definition AI inference technology for object detection.
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example in which the input image is divided into four 
images. In the division process, since each divided 
image has S × S grids, the four total divided images 
can be regarded as 2S × 2S grids. This means that the 
grid size is reduced to half. However, the division 
process causes the receptive field to narrow because 
it does not execute the convolutional operations for 
the whole image, thus cannot detect large objects. In 
contrast, in the whole process, although the detection 
resolution is low, a wide receptive field can be 
obtained. Therefore, with our technology, the divi-
sion process with high detection resolution and small 
receptive field and the whole process with low detec-
tion resolution and wide receptive field are com-
bined, which enables object detection with high 
detection resolution and wide receptive field. Con-
cretely, when an image with 1920 × 1080 pixels is 
input, the minimum gird size without our technology 
(YOLOv3 only) is 60 × 34 pixels because S is 32. In 
contrast, with our technology, the minimum grid size 
becomes 30 × 17 pixels when there are four divisions, 
and higher detection resolution can be provided.

Our technology is suitable for hardware implemen-
tation because all object-detection processes can be 
executed in parallel. The same weight coefficients 
can also be used among all object-detection process-
es. In addition, any AI inference scheme for object 
detection can be applied, and re-training for applying 
our technology is not necessary. Moreover, the com-
putational complexity with our technology is propor-

tional to the number of divisions. This means that our 
technology can reduce the grid size with less com-
plexity than increasing the number of grids in the 
CNN because the complexity of the CNN increases 
with the square of the number of grids.

2.2   Details of combination process
In the combination process, the undetected objects 

in the shrunk whole image are selected from the 
object-detection results obtained with the divided 
images. The detected objects in the shrunk whole 
image and the selected objects are output as the final 
object-detection results. 

This selection requires determining whether an 
object detected in the divided image is an undetected 
one in the shrunk whole image. The combination 
process calculates two indicators: a multiplicity 
between the detected object in the divided image and 
that in the shrunk whole image and the ratio between 
the area size of the detected object in the divided 
image and that in the shrunk whole image. 

When both indicators are high, the process deter-
mines that the detected object in the divided image is 
the same as that in the shrunk whole image and 
excludes it from the objects to be selected. In con-
trast, when either of these indicators is low, the pro-
cess determines that the detected object in the divided 
image is different from that in the shrunk whole 
image. This is executed for all detected objects in the 
divided images in combination with all detected 

Fig. 2.   High-definition object-detection mechanism.
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objects in the shrunk whole image, and the non-
excluded detected objects in the divided images are 
selected as the undetected objects in the shrunk whole 
image. Moreover, the object with the class detected 
only in the divided images is selected when its object 
size is sufficiently small that it cannot be detected in 
the whole shrunk image, e.g., its object size is less 
than 1/100 of the input image size.

The above-mentioned multiplicity Imultiplicity is a 
dedicated indicator for enabling comparison between 
the divided and whole objects and is expressed as

Imultiplicity = Aoverlap / Adiv,� (1)

where Aoverlap is the overlapped area size between the 
divided object detected in the divided image and the 
whole object detected in the shrunk whole image, and 
Adiv is the area size of the divided object, as shown in 
Fig. 3(a). Although intersection over union (IoU) is 
often used as multiplicity, it is unsuitable to use to 
compare a divided object and a whole object because 
it assumes comparison between whole objects. 
Therefore, we newly define Imultiplicity. When Imultiplicity 
is larger than or equal to a threshold α, the multiplic-
ity is determined to be high. Under the high multiplic-
ity condition, the divided object is likely to be the 
same as the whole object.

Even if the multiplicity is high, the detected object 
in the divided image may be different from that in the 
shrunk whole image when the area-size ratio between 
those objects is high, as shown in Fig. 3(b). The 
above-mentioned size ratio Iratio is used for determin-
ing this condition. The Iratio is given by

Iratio = Adiv / Awhole,� (2)

where Awhole is the area size of the detected object in 
the shrunk whole image. Under the high multiplicity 
condition, when Iratio is larger than or equal to a 

threshold β, the detected object in the divided image 
is determined to be same as that in the shrunk whole 
image.

With these indicators in the same class, the unde-
tected objects in the shrunk whole image are selected 
from the detected objects in the divided images, and 
both large and small objects can be detected while 
avoiding duplicate detection of the same object. 

3.   Object-detection performance

We applied our technology to the standard YOLOv3 
model with 608 × 608 pixels and evaluated object-
detection performance. The same weight coefficients 
are used between all object detectors in our technol-
ogy, as described in Section 2.1. We used the weight 
coefficients published in [11]. These coefficients are 
pre-trained with the Microsoft Common Objects in 
Context (MS COCO) dataset [12], which is a widely 
used object-detection dataset with 80 classes. 

3.1   Optimization of pre-set parameters
With our technology, α and β are pre-set for the 

combination process. An object detected in the divid-
ed image is more likely to be determined as unde-
tected in the shrunk whole image when these thresh-
olds are higher and more likely to be determined as 
the same when these thresholds are lower. Thus, α 
and β should be optimized to execute the combination 
process properly.

Object-division patterns can be mainly classified 
into horizontal division (Fig. 4(a)), vertical division 
(Fig. 4(b)), or cross-shaped division (Fig. 4(c)). 
When there are two divisions, only the vertical or 
horizontal division pattern can occur. In contrast, 
when there are more than two divisions, all division 
patterns can occur, and the division pattern for the 

Fig. 3.   Examples of Adiv, Awhole, and Aoverlap.
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object varies in accordance with the position of that 
object in the image. For this reason, commonly avail-
able α and β need to be obtained for various division 
patterns.

We searched for the optimized α and β where the 
average precision (AP) is maximized. The AP is 
obtained from precision and recall. In this search, α 
and β were varied from 0.1 to 0.9 in increments of 
0.2. We used the images in the MS COCO dataset 
val2017 because the objects included in these images 
are large and the division patterns shown in Fig. 4 can 
be reliably generated.

Figure 5 shows the measured relationship between 
AP, α, and β. The AP decreased as β increased from 
0.1 in all division patterns. The AP also reached its 
maximum when α was 0.5 in all division patterns. 
The AP gradually decreased as α increased from 0.5. 
This is because an object detected in the divided 
image is more likely to be determined as undetected 
in the shrunk whole image as α becomes higher. In 
other words, the optimized α and β are 0.5 and 0.1, 
respectively, for all division patterns. Therefore, the 
combination process with our technology can be 

properly executed by pre-setting α to 0.5 and β to 0.1.

3.2   Object-detection performance
We conducted evaluations to determine the effec-

tiveness of our technology. On the basis of the opti-
mized result described in the previous section, α and 
β were set to 0.5 and 0.1, respectively. There are two 
divisions. 

We first conducted a basic evaluation using 5000 
images in the MS COCO dataset val2017 and mea-
sured the AP for each class. Although the images 
included in the MS COCO dataset are standard defi-
nition (SD) images, such as 600 × 400 pixels, large 
objects account for a higher percentage of the objects 
in the images; thus, we can determine the image-
division penalty with our technology by comparing 
the APs with and without our technology. The mea-
sured AP is that averaged by 10 IoU thresholds in 
0.05 increments from 0.5 to 0.95.

Figure 6 shows the measurement results. The AP 
improved in almost all classes and by a maximum of 
1.2 times. This means that our technology can suppress 
the image-division penalty for large objects and 

Fig. 4.   Division patterns.
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improve object-detection performance even in SD 
images.

We then evaluated object-detection performance 
with full HD images. We selected 150 full HD (1920 
× 1080) images from the VisDrone2019 dataset [13] 
and evaluated precision and the number of detected 
objects. The VisDrone dataset is a large-scale drone-
captured dataset with ten classes and includes full HD 
images. For the weight coefficients, we used the same 
coefficients pre-trained using the MS COCO dataset 
as above. To calculate precision, we remapped people 
and pedestrian labels to person label and van label to 
car label in the VisDrone dataset, and only the com-
mon class labels between MS COCO and VisDrone 
were evaluated. 

Table 1 summarizes the detection results, and 
Figure 7 shows the example images obtained in this 
evaluation. From Table 1, our technology enabled the 
number of detected objects to be increased while 
maintaining precision. For example, the number of 

detected objects in the person class was 1.7 times 
higher with our technology than without it. Across all 
evaluation classes, it was 2.1 times higher on aver-
age. As shown in Fig. 7, small objects such as pass-
ersby and distant cars could be detected with our 
technology but could not be detected without it. 

Figure 8 shows the size distribution of detected 
objects. Our technology could detect much smaller 
objects. Specifically, the minimum width size was 
halved from 12 pixels without our technology to 6 
pixels with it. This is because 2S (width) × S (height) 
grids are achieved with our technology when there 
are two divided images in the division process, as 
described in Section 2.

These results indicate that our technology can 
improve object-detection performance in not only SD 
images but also HD images by suppressing the 
image-division penalty.

Fig. 6.   AP of each class (image size: about 600 × 400 pixels).
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Table 1.   Summary of the detection results (image size: 1920 × 1080 pixels).

Class
W/o our technology (standard YOLOv3 model only) W/ our technology

Precision [%] Total number of objects
detected in 150 images Precision [%] Total number of objects

detected in 150 images

Person 62.5 176 62.8 298

Car 83.9 1426 81.5 2049

Bicycle 50.0 6 54.5 11

Truck 17.1 111 19.3 176

Bus 33.3 6 15.0 20

Motorbike 61.5 13 59.5 37
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Fig. 7.   �Examples of detection results: (a) without our technology (standard YOLOv3 model only) and (b) with our 
technology.

(a) (b) 

Number of detected objects: 21Number of detected objects: 21 Number of detected objects: 39Number of detected objects: 39

Number of detected objects: 77Number of detected objects: 77 Number of detected objects: 100Number of detected objects: 100Number of detected objects: 77 Number of detected objects: 100

(a) (b) 

Number of detected objects: 21 Number of detected objects: 39

Fig. 8.   Size distribution of detected objects in high-definition images.
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4.   Conclusion

This article introduced our technology that enables 
the detecting of a wide range of objects with one 
high-definition camera at one time for edge/terminal 
AI applications. It detects objects with a high detec-
tion resolution and wide reception field by combining 
the division process with multiple divided images 
and the whole process with the shrunk whole image. 

We applied our technology to the standard YOLOv3 
model with 608 × 608 pixels and evaluated object-
detection performance. The evaluation results indi-
cate that our technology can improve object-detection 
performance in not only standard definition images 
but also high-definition images while suppressing the 
image-penalty. 

This technology is suitable for hardware implemen-
tation because all object detectors can be executed in 
parallel for real-time operation. Any AI inference 
scheme for object detection can be applied, and re-
training for applying our technology is not necessary. 
This will facilitate its application to various edge/
terminal AI applications.
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