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1.   Trace elements in living organisms

Iron is a trace element that plays a significant role 
in the body. Physiologically, it is involved in oxygen 
transport via hemoglobin and energy production via 
adenosine triphosphate*1. Pathologically, it is 
involved in many neurodegenerative diseases such as 
Alzheimer’s disease. To understand these phenome-
na, it is necessary to study the transport and oxida-
tion-state changes of ferric ions.

2.   Methods for studying metal ions in 
biological samples

Mass spectrometry is a typical method for studying 
metal ions in biological samples. This method is 
quantitative and enables cell-by-cell analysis. How-
ever, in-situ observation is difficult because the ana-
lytical process involves ionization, i.e., cell disrup-
tion by inductively coupled plasma or laser irradia-
tion. Optical methods, such as Raman spectroscopy, 
are also used to analyze metallic elements. They are 
suitable for in-situ observation and imaging of intra-
cellular structures. However, these methods cannot 

detect changes in the valence of ions due to redox 
reactions or protein binding, so other methods are 
required to obtain this information.

Electron spin resonance (ESR) is widely used in 
various fields such as physics, chemistry, biology, 
geosciences, pharmaceuticals, and medicine. It is 
also useful for analyzing metal ions in biological 
samples, including ion valences. The difference 
between metal ions can be distinguished by determin-
ing the g-factor parameter. Typically, the analysis is 
conducted by filling small glass tubes with several 
milliliters of samples. The information obtained is 
therefore an average of the sample. In addition, spa-
tial resolution and sensitivity limit cell-by-cell imag-
ing.

A magnetometer based on a superconducting quan-
tum circuit*2 has micrometer spatial resolution and 
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*1 Adenosine triphosphate: A source of energy for cells.
*2 Superconducting quantum circuit: A superconducting circuit con-

taining a circuit element that behaves in a quantum mechanical 
way. Superconducting quantum circuits consist of a Josephson 
junction with nonlinear current and voltage characteristics in ad-
dition to the inductors and capacitors of ordinary electronic cir-
cuits.
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can analyze materials with unpaired electrons*3 such 
as metal ions. The method can therefore be a useful 
tool for investigating metal ions in biological samples 
at the cellular level.

3.   Quantum sensing using superconducting 
quantum circuits

Quantum sensing with superconducting quantum 
circuits is mainly aimed at ultra-sensitive measure-
ments of magnetic fields or their source electron 
spins. An electron spin in materials acts as a probe for 
the properties of the surrounding elements. It can 
therefore be used as a tool for material analysis. 
Research on quantum sensing using superconducting 
quantum circuits is progressing with two main 
approaches. In the first approach, ultra-high sensitiv-
ity is achieved by improving the amplifier noise and 
other sensitivity limiting factors of ESR spectrome-
ters using superconducting quantum circuit technol-
ogy. In the second approach, small numbers of elec-
tron spins can be detected using magnetometers 
based on superconducting qubits, which are highly 
sensitive to magnetic fields. Both approaches can 
detect the samples in the vicinity of superconducting 
quantum circuit chips. NTT is researching the latter 
approach, using superconducting flux qubits (FQs). 
We developed an ultra-sensitive sensor capable of 
detecting 20 electron spins in 1 second of signal inte-
gration. With this sensor, we successfully analyzed 
solid-state samples with micrometer spatial resolu-
tion by ESR [1, 2].

The sensors based on superconducting quantum 
circuits can also achieve high spatial resolution 
because the size of the superconducting quantum sen-
sor can be reduced. For example, an FQ consists of a 
rectangular loop. The size of the loop is a few 
micrometers on each side. It selectively detects only 
the magnetic field penetrating through the loop, 
enabling measurements with micrometer-scale spa-
tial resolution.

The high sensitivity and high spatial resolution are 
particularly powerful when applied to biological 
samples. The size of an FQ of a few micrometers is 
comparable to the size of a typical cell, giving us the 
spatial resolution to sufficiently distinguish individu-
al cells. As the integration of superconducting qubits 
is progressing for quantum computing applications, it 
is possible to conduct cell-by-cell imaging with sin-
gle-cell spatial resolution by fabricating two-dimen-
sional arrays of FQs.

As the first step toward cellular imaging, we con-

ducted a proof-of-principle experiment to measure 
trace elements in cells using an FQ. We could mea-
sure ferric ions in neurons with single-cell-level spa-
tial resolution [3].

4.   Method for detecting electron spins using 
an FQ

Figure 1 shows a schematic of the electron spin 
measurement system using an FQ. The FQ and neu-
rons were placed in a dilution refrigerator, and 
experiments were conducted at temperatures below 
200 mK (below –272.95℃). Biological samples are 
rarely measured at such cryogenic temperatures. 
Such a combination of biological samples and low 
temperature raises the concern that the low tempera-
ture may alter the behavior of neurons and prevent 
biological information from being obtained. Howev-
er, since the target of this study is the metal ions in the 
sample, measurements can be made even at low tem-
peratures. In addition, the sensitivity of electron spin 
detection generally improves with decreasing tem-
perature, so a low-temperature environment is prefer-
able for measuring small amounts of metal ions.

The FQ was fabricated on a silicon substrate. As 
shown in Fig. 1, an FQ is a loop-shaped device con-
taining three Josephson junctions*4 (indicated by the 
X symbols in the figure). The clockwise and counter-
clockwise currents flowing through the loop corre-
spond to two quantum states, forming a two-level 
quantum system. The FQ is surrounded by a super-
conducting quantum interference device (SQUID)*5. 
The SQUID is connected to an amplifier, analog-to-
digital converter, personal computer, etc. at room 
temperature to read out the quantum state of the FQ. 
The transition frequency between two levels of the 
FQ is controlled by changing the magnetic flux 
through the loop. This magnetic flux is provided by a 
superconducting magnet placed near the FQ (B⊥ 
shown in Fig. 1).

The principle of electron spin detection using an 
FQ is shown in Fig. 2. As mentioned above, FQs are 
usually controlled by an external superconducting 
magnet. However, the resonance frequency of the FQ 

*3 Unpaired electron: An electron in an atom or molecule that has 
not formed a pair. These electrons are a source of magnetization. 
ESR can measure the properties of materials containing unpaired 
electrons.

*4 Josephson junction: A circuit element with a very thin insulating 
film sandwiched between two superconductors, used as a nonlin-
ear element in superconducting quantum circuits.

*5 SQUID: A loop-shaped device with two Josephson junctions 
used as a highly sensitive magnetometer.
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is also changed when a sample acts as a magnetic field 
source in the vicinity of the FQ. If the sample is para-
magnetic*6, the magnetization of the sample, i.e., the 
alignment of the electron spins, can be controlled by 
the temperature and magnetic field applied to the 
sample. At low temperatures and high magnetic 
fields, the effect of aligning electron spins along the 
direction of the magnetic field is greater than thermal 
fluctuation. Therefore, the sample shows a large mag-
netization (blue box in Fig. 2). In contrast, at high 
temperatures and low magnetic fields, the electron 
spins are oriented in different directions due to ther-
mal fluctuations. Therefore, the sample shows small 
magnetization (red box in Fig. 2). The resonance 
frequency of the FQ changes because the magnetic 
flux through the qubit loop changes as the magnetiza-
tion of the sample changes. Therefore, the magnetic 
properties of the sample can be studied by measuring 
the change in the resonance frequency of the FQ as a 
function of the temperature and magnetic field (B  in 
Fig. 1). It is important to note that the direction of the 
magnetic field for controlling the electron spins (B  in 
Fig. 1) is different from that of the magnetic field for 
controlling the qubit (B⊥ in Fig. 1).

Fig. 2.    Principle of electron spin detection using an FQ. 
The figure is a modification of the original paper [3] 
(Creative Commons License (Attribution 4.0 
International)).
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Fig. 1.    Experimental setup for electron spin detection using an FQ. The figure is a modification of the original paper [3] 
(Creative Commons License (Attribution 4.0 International)).
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*6 Paramagnetism: One of the magnetic properties of materials. 
When no external magnetic field is applied, the direction of elec-
tron spins is random. However, when a magnetic field is applied, 
the electron spins align, and magnetization appears.
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The sensitivity of electron spin detection improves 
when the magnetic interaction between the sample 
and the FQ is large. This is usually achieved by 
reducing the distance between them. However, since 
biological samples may contain liquid, insulating 
properties cannot be expected. Therefore, for the FQ 
to function properly, an insulating film must be 
placed between the biological sample and the FQ. We 
have solved this problem by using a biocompatible 
polymer film (parylene) with a thickness of a few 
micrometers for the insulation.

Rat hippocampal neurons were used as biological 
samples. These neurons were cultured on the parylene 
film. To simulate neurological diseases where cells 
contain elevated levels of iron and other metals, the 
neurons were cultured in a medium supplemented 
with ferric ions. As shown in Fig. 3, we prepared 
neurons that took up more ferric ions than those cul-
tured in a standard culture medium. The structure of 
neurons can be maintained at low temperatures by 
cross-linking proteins with paraformaldehyde and 
freeze-drying them after the fixation.

The parylene film with cultured neurons was 
placed on a silicon substrate on which the FQ had 
been fabricated. The loop size of the FQ is 24 × 
6 μm2, about the size of a neuron. Therefore, the data 
obtained in the experiment can be considered to 
reflect the properties of a single cell.

5.   Measuring neurons using an FQ

We first conducted an experiment to detect the 

magnetization of neurons. We measured the spectral 
shift corresponding to the change in the resonance 
frequency of the FQ. The in-plane magnetic field of 
several milli Tesla and the temperature were con-
trolled. Figure 4 shows that at the lower temperature 
or higher magnetic field, the spectrum of the FQ 
shifted significantly: the sample showed a large mag-
netization. This result is consistent with the expected 
behavior when the sample contains paramagnetic 
material. Thus, the neurons and/or the parylene may 
contain paramagnetic components.

To determine whether the neurons or the parylene is 
paramagnetic, we measured only the parylene under 
the same experimental conditions (Fig. 5). Parylene 
is a polymer film composed of carbon and hydrogen 
that contains no unpaired electrons. In principle, it 
would not be paramagnetic. However, a small para-
magnetic response can be observed due to damage 
such as oxidization. Such a control experiment is 
therefore necessary. Figure 5 shows that the magneti-
zation of parylene was significantly smaller than that 
of neurons. This result indicates that the magnetiza-
tion detected in Fig. 4 is almost entirely from the 
neurons.

The results thus far suggest that the neurons contain 

Fig. 3.    Optical micrographs of neurons cultured in normal 
medium and in medium supplemented with iron. 
The figure is a modification of the original paper [3] 
(Creative Commons License (Attribution 4.0 
International)).
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Fig. 4.    Magnetization of neurons measured using an FQ. 
The vertical axis is expressed in units of magnetic 
flux quanta (Φ0). The figure is a modification of the 
original paper [3] (Creative Commons License 
(Attribution 4.0 International)).
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some paramagnetic material. However, the origin of 
this paramagnetism is unknown. We collaborated 
with Ono and Hori laboratory at Shizuoka University, 
which specializes in low-temperature ESR, to further 
analyze the samples. The g-factor can be obtained 
from the ESR spectrum. By comparing this value 
with known material-specific g-factors, the source of 
the magnetization can be identified.

The ESR spectrum of neurons is shown in Fig. 6. 
The peaks corresponding to g-factors of 9.8, 4.3, and 
2.0 can be observed in this spectrum. The g-factors 
9.8 and 4.3 are known to correspond to ferric ions in 
the cell [4]. The magnitude of the peaks indicates that 
this is the main source of the magnetization in the 
sample. Combining this result with the magnetome-
try result of the FQ, we can say that we have detected 
ferric ions in neurons with spatial resolution at the 
single-cell level. The peak with a g-factor of 2.0 is 
due to copper ions, which may also contribute to the 
magnetization in smaller amounts.

We conducted a qualitative analysis of metal ions in 
neurons using an FQ. The results of magnetometry 
using an FQ enable the quantification of metal ions 
contained in neurons. The magnitude of the change in 
the resonance frequency of the FQ corresponds to 
that of the magnetization. Therefore, this change in 
resonance frequency can be converted to the number 
of metal ions by comparing the results of a separate 
experiment on a reference sample with a known elec-
tron spin concentration. The results in Fig. 4 indicate 
that the measured rat hippocampal neurons contained 

8 μg of iron per gram in the dry state. This result is 
consistent with 2 to 34 μg/g obtained in previous 
studies on human brain cells [4, 5].

6.   Prospects

Using quantum sensing technology with FQs, we 
have successfully detected and analyzed metal ions in 
neurons quantitatively and qualitatively with single-
cell-level spatial resolution. Future work includes 
single-cell resolution ESR spectroscopy of neurons 
using an FQ and imaging of metal ions in tissues by 
fabricating two-dimensional arrays of FQs.
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