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1.   Expectations for remote collaborative robots

Demand for robots that cooperate with humans, 
known as collaborative robots, or cobots, is increas-
ing. These robots are capable of complex cognition 
and decision-making tasks, as well as precise manip-
ulations that can be complemented by human opera-
tors, leading to their anticipated utilization across a 
wide range of industries. In the construction industry, 
for example, construction robots can perform tasks 
that are challenging for human workers, while opera-
tors can focus on quality control and machine man-
agement, enhancing productivity and improving 
working conditions. In the medical field, surgical 
robots provide precise operational assistance, while 
doctors can make clinical decisions during proce-
dures. Providing operators with the robot’s sense of 
force (the sensation of pressure and weight when 
touching objects) also allows for even more delicate 

manipulations. There are various methods for 
enabling force feedback, but bilateral control, which 
coordinates the robot with the operator’s movements 
to provide force feedback, is well-known. Thus, in 
this article, we refer to these robots as “bilateral con-
trol robots.”

As the demand for collaborative robots continues to 
rise, remote robot control has also garnered increas-
ing attention as a solution to mitigate the impact of 
the pandemic and labor shortages. For instance, doc-
tors in Tokyo are able to carry out surgical procedures 
remotely on patients in rural areas (see Fig. 1). 
Although surgeries can be conducted despite the 
physical distances separating the doctor and patient, 
a high-quality network is essential to connect the 
locations.

Requirements for networks and applications are 
expected to differ significantly on the basis of the 
operations they support. The specific requirements 
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for construction robots, remote surgery robots, and 
bilateral control robots are detailed in Table 1. The 
requirements for remote surgery robots, which neces-
sitates precise control, are more stringent than those 
for construction robots. The requirements for bilat-
eral control robots, which provide haptic feedback 
through synchronization, are even more demanding. 
This is due to the need for these robots to maintain 
synchronization within microseconds.

2.   Technical overview

To enable remote robot control, the integration of 
robotic technology and communication technology is 
essential. Therefore, NTT and Sony Group Corpora-
tion have combined their respective technologies to 
undertake a demonstration of remote robot control 
that incorporates a new tactile experience. This sec-
tion provides an overview of NTT’s low-latency 
transport technology and Sony’s precision bilateral 
control technology.

2.1   Low-latency transport technology
NTT is advancing the development of the All-Pho-

tonics Network (APN) as part of its commitment to 
implementing the Innovative Optical and Wireless 
Network (IOWN)*1, a next-generation communica-
tion technology. In APN IOWN1.0, the network can 
provide a stable, low-latency physical infrastructure 
by exclusively dedicating optical wavelengths from 
end-to-end, crucial for mission-critical services. 
However, it is essential to extend this low latency and 
stability to robot-side applications. To fully leverage 
the capabilities of the IOWN APN, our research and 
development (R&D) efforts are focused on develop-
ing low-latency transport technologies that ensure 
high-quality data delivery directly to the application 
layer.
2.1.1    Uncompressed video transmission technol-

ogy [1]
Uncompressed video transmission technology is a 

IOWN APN

Fig. 1.   Remote surgery by teleoperated robot.

Table 1.   Network requirements for remote robots.

Construction robots Remote surgery robots Bilateral control robots
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Position
accuracy Order of centimeters Less than order of millimeters Less than order of millimeters

Latency Order of several
hundred milliseconds Less than 100 milliseconds Order of several dozen

milliseconds

Jitter – Order of several
hundred microseconds Order of 100 microseconds

*1 IOWN: An innovative network based on photonics technology, 
openly developed through collaborative architecture formulation 
at the IOWN Global Forum.
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method that enables low-latency feedback of visual 
information from remote robots to operators. With 
the recent increase in network capacities, although 
the required transmission bandwidth becomes larger 
compared with buffering and compressing video 
frames, the ability to transmit video with low latency 
has become more advantageous in real scenarios.

Traditional optical transmission devices were 
offered as integrated solutions by individual manu-
facturers, including both hardware and software 
functions, which made it difficult for service provid-
ers to flexibly add additional functionalities for video 
transmission. In contrast, new open optical transmis-
sion devices have started to emerge with a disaggre-
gated configuration. These devices allow for the 
separation of various functions and the addition of 
flexible configurations and enhancements through 
standardized interface control. We have seized this 
trend and developed an uncompressed video trans-
mission plug-in unit (VideoPIU) that can be used 
with disaggregated open optical transmission devices 
(Fig. 2).

VideoPIU converts serial digital interface (SDI) 
signals*2 directly into SMPTE ST2110 streams [2], 
the standard for Internet protocol (IP)-based video 
transmission, allowing direct video-signal transmis-
sion through open optical transmission devices. Vid-
eoPIU is also implemented in hardware, reducing the 
delay from video input on the transmitting side to 
video output on the receiving side to within 1 ms. It 
can process 8K60p video*3 per image and, by linking 
two images, can achieve 8K120p transmission. It also 

supports seamless protection (SMPTE ST2022-7 
[3]), ensuring continuous delivery without interrup-
tion even in the event of network disruptions or tem-
porary failures by using two different optical paths.
2.1.2    Remote direct memory access acceleration 

technology
Remote direct memory access (RDMA) communi-

cation is widely used in datacenters and high-perfor-
mance computing domains as a method for achieving 
high-bandwidth and low-latency data access between 
computers. RDMA allows for the direct transfer of 
data from memory to the network without central 
processing unit (CPU) intervention, making it a 
highly promising technology for fast, low-latency 
data transfers essential for time-sensitive and real-
time services.

However, RDMA reliable connection, which facili-
tates reliable data transfers, is primarily designed for 
short-distance communications within datacenters. 
This design limitation has historically led to perfor-
mance issues when adapted for medium to long-dis-
tance communications. The latency induced by lon-
ger distances typically results in increased waiting 
times at the requester due to slower acknowledge-
ment (ACK) reception from the responder, subse-
quently lowering throughput.

To address this issue, we devised a method for  

Fig. 2.   Uncompressed video transmission plug-in unit (VideoPIU) and specifications.
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*2 SDI signal: A video transmission method using coaxial cables, 
widely used in broadcasting equipment.

*3 8K60P video: A video format that transmits ultra-high-resolution 
video at a resolution of 7680 x 4320 pixels, with a refresh rate of 
60 frames per second, delivering clear and detailed visuals.
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generating pseudo-ACKs near the requester, allow-
ing for the early release of the requester’s work queue 
element and enabling the acceptance of subsequent 
work requests. This method helps prevent perfor-
mance degradation by reducing wait times and main-
taining throughput (Fig. 3(a)).

This innovative method places accelerators near 
both the requester and responder, bridging long-dis-
tance networks. These accelerators create pseudo-
ACKs using connection establishment data and 
request packets, effectively minimizing the waiting 
period for transmissions. However, this initially 
resulted in disabled packet-loss detection and retrans-
mission mechanisms, posing significant reliability 
concerns. To resolve these, we implemented a suit-
able retransmission mechanism for the communica-
tion segments (Fig. 3(b)). This mechanism uses the 
Go-Back-N and selective retransmission strategies 
by segment, enabling quick recovery from packet 
loss while maintaining high-speed communication 
over long distances.

We conducted simulation evaluations of the above 
method. In the evaluations, we simulated propagation 
delays typical of long-distance networks and com-
pared the throughput with traditional RDMA com-
munications. The results indicate that under condi-
tions simulating a 1000-km delay, with and without 
packet loss, there was an average improvement in 
throughput of 10 and 40 times, respectively, for a 
message size of 4 KiB (Fig. 4).

2.2   Precision bilateral control technology
We have sought collaboration with Sony, which is 

developing precision bilateral control technology. 
Sony possesses advanced bilateral control technolo-
gy capable of flexibly adapting to changes in the 
external environment in response to human opera-
tions and controlling very minute forces with extreme 
accuracy. This section outlines the overview of the 
precision bilateral control technology.

Precision bilateral control technology is achieved 
by synchronizing the actions of two robots: a leader 
and follower. The follower robot moves in response 
to the leader robot’s actions, and when the follower 
robot touches an object, the reactive force is transmit-
ted back to the leader robot [4] (Fig. 5(a)).
2.2.1   High-sensitivity force sensing technology [5]

To feedback the sensation of touching human soft 
tissues to the operator, it is necessary to detect minute 
force changes as small as 1 gf (gram-force, equivalent 
to 0.0098 N) at the tool tip. However, incorporating 
force sensors into the system resulted in inertial 
forces being observed as noise, which made it chal-
lenging to detect slight changes in tip force. To 
address this issue, Sony has applied an optical strain 
sensor called a fiber Bragg grating (FBG) sensor, 
which features a diffraction grating etched into part 
of an optical fiber. Despite its ultra-fine fiber shape, 
the FBG sensor can measure the strain in the sensor 
part with high sensitivity. By mounting an ultra-sen-
sitive FBG sensor at the tool tip and improving the 
algorithm that estimates the three-dimensional force 
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applied to the tool tip from the sensor’s strain amount, 
Sony has significantly reduced dynamic noise. This 
advancement allows for the precise detection of even 
minute force changes as small as 1 gf (Fig. 5(b)).
2.2.2    Precision position and force control technol-

ogy
To achieve precise bilateral control, precise man-

agement of both position and force is essential. Tra-
ditional algorithms are affected by modeling errors 
due to variations in the robot’s posture, leading to 
degraded position-tracking performance and vibra-
tions when interacting with external environments. 
To address this issue, Sony has incorporated its pro-
prietary technology, the generalized inverse dynam-
ics (GID) library*4, into their systems. This integra-
tion minimizes the impact of modeling errors caused 
by changes in robot posture, significantly enhancing 
responsiveness and operational stability, achieving 
position accuracy of less than 1 mm.

High-speed real-time processing is crucial for the 
signal processing involved in precise bilateral con-
trol. These signal processing tasks have traditionally 
been implemented on generic CPUs within a host 
personal computer (PC), which could not meet con-
trol system specifications due to communication 
delays and interrupt processing delays. To overcome 
these challenges, Sony has implemented part of the 
electrical processing on a field programmable gate 
array (FPGA), which is suitable for high-speed paral-
lel processing. A proprietary protocol has also been 
developed for communication between the host PC 
and FPGA, resulting in a system that is 50 times 
faster than previous systems. By cascading multiple 
FPGAs using optical fibers, it is now possible to 
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Fig. 5.   Precision bilateral control technology.
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*4 GID library: A model-based control algorithm that executes opti-
mization calculations considering various constraints to accurate-
ly determine the necessary actuation in robots for specific tasks, 
along with a library that implements this algorithm.
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transmit signals with minimal delay in multi-degree-
of-freedom systems such as the precision bilateral 
control system composed of leader and follower 
robots.

3.   Results of the joint demonstration experiment

We conducted a demonstration experiment to veri-
fy whether remote robot control with haptic feedback 
is functional over distances exceeding 100 km. The 
experiment was carried out in an APN testing envi-
ronment established at the NTT Musashino R&D 
Center. This testing environment included configura-
tions such as APN-G (Gateway) and APN-I (Inter-
change) [6], as discussed in the IOWN Global Forum, 
representing a projection of future service environ-
ments. For this experiment, approximately 120 km of 
optical fiber was used to connect the setup. The con-
figuration and setup of the experiment are illustrated 
in Fig. 6.

In the demonstration, the leader and follower robots 
were connected using Sony’s precision bilateral 

robots. The robot control PCs on both the leader and 
follower sides were equipped with RDMA transfer 
capabilities, facilitating the transmission and recep-
tion of bilateral control signals via an RDMA accel-
erator. Regarding the visual feedback, side-by-side 
stereo video was transmitted using VideoPIU and 
displayed on Sony’s ELF-SR2 spatial reproduction 
display, which enables unaided stereoscopic viewing. 
It is important to note that the FBG sensor was not 
used in this experiment as additional tests beyond 
force feedback evaluation were required.

3.1   Communication evaluation results
Throughout the long-distance demonstration exper-

iment spanning 120 km via the APN, video was trans-
mitted with a remarkably low total latency of 1.6 ms, 
broken down as 1 ms of video-processing delay and 
0.6 ms of APN-transmission delay for the 120 km. 
For the bilateral control signal communication via 
RDMA, the total latency was maintained at 1 ms, 
with an accelerator-processing delay of 0.4 ms, APN-
transmission delay of 0.6 ms, and jitter of only 10 µs. 

Fig. 6.   Configuration and setup of the remote robot control demonstration experiment.
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This setup allowed for exceptionally stable and low-
jitter communication due to the elimination of CPU 
intervention, confirming the feasibility of achieving 
the high stability required by the bilateral control 
robots, as outlined in Table 1.

3.2    Operational evaluation of bilateral control 
robots

The operational evaluation revealed that the opera-
tor could not perceive any significant distance 
between themselves and the follower robot, enhanc-
ing the sense of immediacy and responsiveness. In 
this experiment, interactions with objects of varying 
hardness were performed remotely through the bilat-
eral control robot, enabling the operator to discern 
even subtle differences in the object’s surface texture. 
The ELF-SR2 spatial-reproduction display also pro-
vided natural stereoscopic vision enabled by head 
tracking, allowing the operator to carry out natural 
manipulations with a clear sense of spatial depth.

4.   Future initiatives

In this initiative, a joint demonstration was con-
ducted in an APN test environment, merging NTT’s 
low-latency transport technology with Sony’s preci-
sion bilateral control technology. This was aimed at 
achieving remote control operations that do not let 
users feel the distance, even when performed over 
distances exceeding 120 km. The results confirmed 

that it is possible to meet the stringent requirements 
demanded of bilateral control robots, allowing opera-
tors to feel as though they are directly touching 
objects in front of them.

Going forward, we plan to expand the scope of 
precise remote operations beyond geographical limi-
tations by conducting demonstration experiments 
tailored to specific use cases. Through these efforts, 
we aim to contribute to the creation of a richer soci-
ety.
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