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1.   Introduction

A system in which points move according to a cer-
tain rule over time is called a dynamical system. 
Given a polynomial or a rational map f, we consider 
the orbit of each point under iterated composition, 
that is,

 z  f(z)  f(f(z)) = f 2(z)   f (f (f(z))) = f 3(z)  ….

Regarding this sequence as a discrete time series, we 
obtain a dynamical system. The questions of when 
this sequence diverges to infinity or converges to a 
certain value are fundamental yet challenging. Arith-
metic dynamics studies arithmetic phenomena in 
such dynamical systems and was established around 
2000 by Silverman. Depending on whether the focus 
is more on number theory or dynamical systems, the 
nature of the research varies. This article introduces 
arithmetic dynamics from a number theoretic per-
spective, particularly problems related to the determi-
nation of rational points on curves. Problems from 
the dynamical-systems perspective are introduced in 
another article [1] in this issue.

One major goal in arithmetic dynamics is to com-
plete the dictionary of analogies between the theory 
of elliptic curves or their higher-dimensional analogs, 
Abelian varieties in number theory, and their dynam-
ical system counterparts. Through the dictionary, one 

often obtains new insights into arithmetic geometry.

2.   Morton–Silverman conjecture

A torsion point on an elliptic curve is a point that 
becomes the identity element O under repeated addi-
tion. This is equivalent to a point where the orbit 
under the iterated composition of the doubling map is 
a finite set. When an elliptic curve is defined over 
rational numbers, Mazur proved that there are at most 
16 such rational points (more precisely, he complete-
ly determined the possible group structures) [2].

What about, for example, the iteration of the map z2 
on the complex plane? The points, the orbits under z2 
of which are finite in the complex domain, are the 
roots of unity and 0. Among these, the rational points 
(rational preperiodic points) are only 0, 1, and –1. 
What about the map z2 –  3

4 ? The rational preperiodic 
points in this case are only 1

2 , – 1
2 , 3

2 , and – 3
2 . Is the 

finiteness of rational preperiodic points special to 
these maps? In fact, it can be proven that the number 
of rational preperiodic points is finite for any polyno-
mial with rational coefficients of degree d ≥ 2. How-
ever, is the number of such points as small as 3 or 4? 
When restricted to rational periodic points, i.e., ratio-
nal points with periodic orbits, what periods are pos-
sible? The following conjecture addresses this.
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Morton–Silverman uniform boundedness conjecture 
(special case): For any integer d ≥ 2, there exists a 
constant Nd such that the number of rational preperi-
odic points of any rational function f of degree d is at 
most Nd.

This conjecture remains largely open even for qua-
dratic polynomials z2 + c (with c a given rational 
number). It is relatively easy to prove that there are 
infinitely many cs for which there are rational peri-
odic points z of periods 1, 2, and 3. However, it has 
been shown that there are no cs for which z2 + c 
allows rational periodic points of periods 4, 5, or 6 
(with the 6-period case requiring the assumption of 
the Birch–Swinnerton-Dyer (BSD) conjecture) 
[3–5]. Assuming a generalized abc conjecture, it has 
been proven that z2 + c does not have rational peri-
odic points of period 4 or higher. One might think of 
solving the equation fcn(z) = z to find rational periodic 
points of period n. For n = 4, for example, one would 
consider the solutions of the polynomial obtained by 
dividing fc4(z) – z by fc2(z) – z. The situation is similar 
for general period n. The resulting polynomials are 
called the n-th dynatomic polynomials. The figure 
Xndyn defined by these polynomials is a curve, and the 
problem reduces to determining the rational points on 
this curve. These problems are familiar to those 
aware of Fermat’s Last Theorem. In fact, for n = 4, 5, 
6, the results are proven using theories developed for 
determining rational points on specific curves, fully 
using techniques built up until the solution of Fer-
mat’s Last Theorem. However, it should be noted that 
the key theory that led to the final proof of Fermat’s 
Last Theorem is not about determining rational points 
on specific curves. By using a non-trivial rational 
solution of Fermat’s Last Theorem, a too-nice elliptic 
curve called the Frey curve is defined. According to 
the Taniyama–Shimura conjecture, which is now a 
theorem, any elliptic curve corresponds to a modular 
form [6, 7]. However, due to the properties of the 
original elliptic curve, the corresponding modular 
form has such too-nice properties that it can be shown 
not to exist, leading to a contradiction. Therefore, 
Fermat’s Last Theorem’s non-trivial solution does 
not exist. While it is natural to explore if this surpris-
ing method can be applied to the Morton–Silverman 
conjecture, no method, such as for defining a Frey 
curve, has been developed.

As mentioned above, Mazur proved that the num-
ber of rational torsion points on an elliptic curve is at 
most 16, but what about the higher-dimensional case, 
such as Abelian varieties? This problem remains open 

even for the two-dimensional case. Fakhruddin has 
shown that this conjecture follows from the Morton–
Silverman conjecture, indicating a significance 
beyond merely following analogies [8].

3.   Dynamical cancellation

Consider the following scenario related to the Mor-
ton–Silverman conjecture. Let f be a polynomial of 
degree d. Suppose f  has a rational preperiodic point 
x. Such a point will eventually enter a periodic orbit 
after certain iterations of f. Suppose it enters a peri-
odic orbit of period 4 at time 3, as illustrated in the 
orbit diagram (Fig. 1). In this case, let y = f 4(x). Then, 
x and y collide at time 3. That is, f 2(x) ≠ f 2(y) and 
f 3(x) = f 3(y). For a fixed rational map f, how many 
rational pairs (x, y) satisfy f n–1(x) ≠ f n–1(y) and f n(x) 
= f n(y)? This question is called dynamical cancella-
tion. To answer this, one could examine the existence 

of solutions (x, y) to the equation f n(x) – f n(y)
f n–1(x) – f n–1(y)  = 0 for 

each integer n (≥ 1). This is again reduced to the prob-
lem of determining rational points on curves, which 
is difficult. However, in 2023, Bell, Matsuzawa, and 
Satriano proved that for any rational function f of 
degree 2 or higher, there are no rational pairs (x, y) 
satisfying f n–1(x) ≠ f n–1(y) and f n(x) = f n(y) for suf-
ficiently large n [9]. In joint work with Matsuzawa, I 
have generalized this result to two dimensions [10], 
and Zhong obtained results for higher dimensions 
[11]. Although these results are about determining 
rational points on curves, their proofs use algebraic 
geometry and p-adic analysis.

In a different direction from this generalization to 
higher dimensions, another interesting question is 
whether the bound on n in dynamical cancellation is 
independent of f when the degree d is fixed. If this 
uniform version of dynamical cancellation holds, by 
considering examples such as those mentioned at the 
beginning of this section, we can determine the 
maximum length of the tail of preperiodic orbits, 

Fig. 1.   Preperiodic orbit.
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contributing to the Morton–Silverman conjecture.

4.   Preimages of 0

Returning to the topic of elliptic curves, let us con-
sider the problem of finding torsion points that 
become O under repeated multiplication by a prime 
p. How many such torsion points exist? If it can be 
shown that there are no such points other than O for 
all but finitely many p, it would yield a result compa-
rable to Mazur’s theorem. Similar considerations are 
applied to Abelian varieties. In the context of dynam-
ical systems, consider the analogous problem for the 
map fc(z) = z2 + c. How many pairs of rational num-
bers (c, z) and positive integers n satisfy fcn(z) = 0? 
This is the problem of determining rational points on 
the curve Xn

pre defined by fcn(z) = 0. Faber, Hutz, and 
Stoll have shown, assuming the BSD conjecture, that 
for n ≥ 4, there are no rational points (c, z) with c ≠ 
–1, 0. The map sending a point (z, c) on Xn

pre to (fc(z), 
c) on Xn–1

pre deeply connects these curves, resembling 
the modular curves describing torsion points on ellip-
tic curves.

5.   Arboreal Galois representations

Shifting direction from the problem of determining 
rational points on curves, let us consider problems 
related to extensions of number fields. As in Kum-
mer’s approach to Fermat’s Last Theorem, the 
uniqueness of prime factorization becomes a crucial 
issue when extending the world of numbers (i.e., con-
sidering number fields). The extent to which unique 
factorization fails is described by the quantity called 
the class number. Computing the class number of a 
given number field remains a central, challenge in 
modern number theory. For example, Iwasawa’s the-
ory studying the field extension called p-extension is 
one of the great theories in this direction.

In arithmetic dynamics, a similar problem to Iwa-
sawa’s theory arises. Fix an f and rational number x, 
and consider the tree of points formed by the preim-
ages under iterated composition of f (Fig. 2). The 
problem of determining the number of rational points 
in this tree was discussed in section 4, where it was 
noted that rational points typically disappear early. 
The field obtained by adding these points to the field 
of rational numbers is called an iterated Galois exten-
sion. How does this extension change as the number 
of iterations increases? Consider the preimages of 1 
under f (z) = zp. This corresponds to considering all 
p-th roots of unity. Adding these to the field of ratio-

nal numbers yields a cyclotomic  p-extension. When 
this extension is stopped at the n-th stage, a number 
field is obtained. In Iwasawa’s theory, the Iwasawa 
class number formula describes the asymptotic 
behavior of the class number, which is a remarkable 
theorem. What about the iterated Galois extensions 
arising from the preimages of 0 under z2 + 1? Is there 
an asymptotic formula for the class number like Iwa-
sawa’s class number formula? In Iwasawa’s theory, 
class field theory is used as a fundamental tool, and 
the commutativity of the Galois group (describing the 
symmetries of number fields) is an essential assump-
tion. In most cases, however, the Galois group of 
iterated Galois extensions is non-Abelian and is 
expected to realize a large part of the symmetry of the 
tree (the automorphism group). In p-extensions, they 
realize very little of the symmetry of the tree, which 
is a rare situation. When the Galois group realizes 
very little of the tree’s symmetry (i.e., when it has an 
infinite index in the automorphism group of the tree), 
it is considered that f has special dynamical proper-
ties. For example, if the dynamical system has an 
automorphism, all critical points are pre-periodic 
points, or the orbits of multiple critical points inter-
sect, the Galois group has an infinite index. However, 
it is an open question whether these situations exhaust 
all possibilities for an infinite index. Solving these 
problems would contribute to the non-Abelian gener-
alization of Iwasawa’s theory.

6.   Conclusion

I have introduced several number-theoretic prob-
lems arising from the iteration of polynomials and 
rational functions. These problems not only follow 
the analogy with the theory of elliptic curves and 
Iwasawa’s theory but also extend techniques from 

Fig. 2.   Preimage tree.
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complex dynamics and reveal new arithmetic phe-
nomena. Arithmetic dynamics is still a young field 
but developing rapidly, involving researchers from 
various fields such as algebraic geometry, complex 
dynamics, and arithmetic geometry. I look forward to 
future research developments.
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