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1.   What is motive? 

In mathematics, it is often the case that two differ-
ent phenomena/objects show a surprising relation-
ship. Behind such a surprising connection, mathema-
ticians sometimes find a new mathematical concept. 
Motive is a very good example of this—it is a univer-
sal mathematical object that should exist behind 
many cohomology theories appearing in arithmetic 
geometry. 

2.   Arithmetic geometry

Using the framework of arithmetic geometry, a 
large part of the study of number theory is replaced 
with research on geometric objects called ‘algebraic 
varieties.’ A simple example of algebraic varieties is 
the graph of an (system of) algebraic equation(s). For 
example, the graph of the equation y = x2, a parabola, 
is an algebraic variety. When an equation contains 
only a small number of variables, its graph is ‘visible’ 
to our eyes. However, if an equation contains many 
variables, its graph is often of higher dimension, 
making it ‘invisible’ to us. Even if the graph has a 
lower dimension, its shape could be too complicated 
to study just by directly seeing it. 

3.   Invariants—How to quantify shapes

When it is difficult to investigate a shape by seeing 
it, the notion of ‘invariant’ helps us. An invariant 
transforms a property of shapes into a certain quan-
tity. A typical and useful example is the genus of 
surfaces (Fig. 1), i.e., the number of holes. Of course, 
the genus captures just one aspect of surfaces, but it 
has the following important property:

 Theorem: The genus does not change after 
any continuous deformation.

A continuous deformation means regarding a sur-
face as a ‘soft rubber’ and transforming it without 
tearing. As an application of this theorem, let us do 
the following exercise: can we continuously deform 
the surface in Fig. 1(a) into the one in Fig. 1(b)? 
Apparently, the genus of Fig. 1(a) is 2, and that of Fig. 
1(b) is 3. Thanks to the theorem, any surface obtained 
by a continuous deformation of Fig. 1(a) remains 
having genus 2, not 3. This shows that Fig. 1(a) can 
never be continuously deformed to Fig. 1(b). 

This conclusion could be intuitively obvious since 
these surfaces have simple structures. However, what 
if a surface has a trillion holes? At least to me, it is 
completely non-obvious that the number of holes will 
not change after any continuous deformation of the 
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surface. The point of the above theorem is that the 
result is mathematically proven true for any extreme 
examples outside our imagination. 

4.   How to ‘see’ the invisibles

In the previous example, we could count the num-
ber of holes by directly seeing the figures. However, 
we will not be able to do this for ‘invisible’ shapes, 
which often appear in the study of mathematics. 
Therefore, let us think of another method of calculat-
ing the genus of surfaces. As the above theorem says, 
the genus is unchanged by any continuous deforma-
tion. Therefore, we can replace the surface of a donut 
with a polyhedron, as in Fig. 2. We then have the 
following surprising theorem:

 Theorem: If the genus of a polyhedron is , 
then we have #(vertices) – #(edges) + #(faces) 
= 2–2 .

Here, #(vertices) means the number of vertices on 
the polyhedron, and similarly for edges and faces. 
Also, the alternating sum #(vertices) – #(edges) + 
#(faces) is called the Euler characteristic. By direct 
counting, we can check if the theorem is true for the 
surface in Fig. 2: it has 24 vertices, 48 edges, and 24 
faces. And the genus is  = 1. Substituting them into 
the equation in the theorem, both sides have the same 
value 0. This works. If one has a pencil and piece of 
paper, it would be a fun exercise to try other examples, 
e.g., a hexahedron. In this case, the genus is  = 0.

In the above example, we could easily and directly 
count the number of holes since we could see the 
entire surface structure. If we live on the surface (like 
we live on the earth, a sphere), however, counting the 
number of holes would be much more difficult. Even 

in this situation, the above theorem ensures that we 
can ‘compute’ the genus by dividing the surface into 
a polyhedron and by counting the numbers of verti-
ces, edges, and faces (which should be possible by 
moving around on the surface without seeing it from 
the universe). 

This approach can be applied not only to surfaces 
but also to geometric objects (shapes) of higher 
dimensions. A (two-dimensional) polyhedron con-
sists of three types of ‘parts’—vertices, edges, and 
faces. These are also called cells. A shape that can be 
continuously deformed to an n-dimensional disk is 
generally called an n-cell. A vertex is a zero-dimen-
sional disk, so it is a zero-dimensional cell. Similarly, 
an edge is a one-dimensional cell, and a face is a two-
dimensional cell (the faces of a polyhedron are angu-
lar, but they are continuously deformed to a disk). A 
shape constructed by combining cells is called a cell 
complex*1 (a polyhedron is a two-dimensional cell 
complex). Just as a surface could be continuously 
deformed to a polyhedron, a large part of higher 
dimensional shapes can be deformed to cell com-
plexes. Cell complexes contain concrete information, 
such as the number of cells in each dimension and 
how two cells are connected (or non-connected) by 
another cell (e.g., we can ask whether two vertices are 
connected by an edge). Such information reveals 
important properties of ‘invisible’ shapes living in 
higher dimensions. 

Fig. 1.    The genus of surfaces: (a) surface of genus 2 and 
(b) surface of genus 3.

(a) (b)

Fig. 2.   Polyhedron of genus 1.

*1 Cell complex: If a shape (topological space) can be continuously 
deformed to a cell complex, it is called a CW complex, where the 
C stands for closure finite and the W for weak topology. Many 
topological spaces appearing in applications are CW complexes.



Feature Articles

NTT Technical Review 41Vol. 22 No. 9 Sept. 2024

5.   Cohomology

The Euler characteristic depends only on the num-
ber of cells in each dimension appearing in the poly-
hedron and does not use the information of the rela-
tionship between the cells. By using this extra infor-
mation, we can construct the cellular cohomology*2, 
which drastically upgrades the Euler characteristic of 
a surface. The Euler characteristic assigns values to 
shapes, while the cellular cohomology assigns vector 
spaces to shapes. 

Let us use the letter X to denote the shape we want 
to study, and let d be the dimension of X. Suppose 
also that X is a cell complex (by applying continuous 
deformation). Then there are (d + 1)-types of cells 
appearing on X—cells of 0, 1, 2, …, d dimensions. 
The cellular cohomology is given as d + 1 vector 
spaces*3 corresponding to the dimensions of cells, 
which are usually written as

H0(X), H1(X), H2(X), …, Hd(X).

Usually, we abbreviate the collection of these d + 1 
vector spaces as H*(X) to simplify the notation. When 
X has dimension 2 (i.e., if X is a surface), then the 
cellular cohomology of X consists of three vector 
spaces H0(X), H1(X), H2(X). Any vector space has 
dimension, and if X is a surface, then the Euler char-
acteristic of X coincides with the alternating sum of 
the dimensions of these three vector spaces. Thus, we 
can regard the cellular cohomology as a generaliza-
tion of the Euler characteristic. 

6.   Functoriality of cohomology

The cellular cohomology has much richer informa-
tion than the Euler characteristic. To see this, we 
should consider not only the shapes but also the con-
tinuous maps between them. By the cellular cohomol-

ogy, a linear map H*(Y) → H*(X) is assigned to a 
continuous map*4 X → Y. This property is called the 
functoriality of the cellular cohomology (Fig. 3). If 
we are given the data of ‘objects’ and ‘maps (mor-
phisms) between objects’ satisfying suitable condi-
tions, they are generally called a category. If we have 
two categories and a rule to assign objects and mor-
phisms of one of them to those of the other, it is called 
a functor. Using these terminologies, we can say that 
the cellular cohomology is a functor from the catego-
ry of CW complexes to the category of (graded) vec-
tor spaces. 

The functoriality of the cellular cohomology 
extracts much information from continuous maps. 
Indeed, it transforms any continuous map to a linear 
map, and any linear map can be represented by a 
matrix after fixing the basis of the vector spaces. A 
matrix is simply a table of numbers, which is nothing 
but numerical data. By applying the theory of linear 
algebra such as determinant, trace, and eigen values, 
we can obtain essential information of the matrix, 
hence of the continuous map we started from.

The functoriality is also useful in the study of the 
symmetry of shapes, which is mathematically an 
action of a group on a shape (e.g., rotation of a circle). 
If the action on a shape X is continuous, then each 
member of a group gives a continuous map X → X, 
and the functoriality of the cellular cohomology 

Fig. 3.   Functoriality of cohomology.

H   (X ) H   (X )

Continuous map

Linear map

*2 Cellular cohomology: Cellular cohomology is defined only for 
CW complexes, but we can generalize this to another theory 
called ‘singular cohomology’, which can be applied to all topo-
logical spaces.

*3 Vector space: A set equipped with addition, subtraction, and sca-
lar multiplication satisfying suitable conditions. Any vector space 
can be identified with a set of numerical vectors, i.e., tuples of 
numbers by fixing a basis.

*4 Continuous map: Intuitively, a map f  between shapes (topological 
spaces) is continuous if the change in the value f(x) is small 
whenever the change in x is small. 
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induces a linear map H*(X) → H*(X). This is nothing 
but a representation of the group. 

7.   Cohomology in arithmetic geometry

Now, let us go back to arithmetic geometry. The 
aim of arithmetic geometry is to study the properties 
of algebraic varieties, i.e., the graphs of algebraic 
equations. If we consider the solutions in real (or 
complex) numbers, then the graphs have continuous 
nature since the set of real or complex numbers has a 
continuous geometric structure. Hence, we can apply 
the cellular cohomology to study graphs. 

However, the main target of number theory is the 
solutions in integers, rational numbers, etc. These 
numbers are non-continuous, hence, so are the 
graphs. It is not a good idea to apply cellular 
cohomology to study such non-continuous graphs 
since it was developed to capture the continuous 
nature of shapes. 

To overcome this difficulty, Alexander Grothendi-
eck, a founder of arithmetic geometry, introduced the 
étale cohomology as an analog of cellular cohomol-
ogy in the context of arithmetic geometry. He and his 
collaborators proved and published the fundamental 
results on étale cohomology [1]. Similarly to the cel-
lular cohomology, the étale cohomology assigns vec-
tor spaces to algebraic varieties and has a certain 
functoriality (we must replace ‘continuous maps’ 
with ‘morphisms of algebraic varieties’). The main 
idea of cellular cohomology is to regard a shape as a 
structure built with small pieces (cells) and extract 
global information from those pieces. The idea of 
étale cohomology is similar—we split algebraic vari-
eties into small pieces (in a suitable sense) and glue 
them to recover the global structure—but its actual 
construction uses many abstract concepts such as 
categories, functors, and sheaves developed in the 
20th century. This abstract approach is not so-called 
abstract nonsense. Grothendieck used these abstract 
concepts to upgrade the concepts from the usual 
geometry. 

The theory of étale cohomology is abstract and 
complicated but very powerful and has continuously 
provided many applications in arithmetic geometry, 
including the proof of the Weil conjecture (an analog 
of the Riemann hypothesis) by Deligne [2] and the 
proof of Fermat’s last theorem by Wiles [3, 4]. It 
might be fair to say that arithmetic geometry cannot 
even exist without the theory of étale cohomology. 

Modern mathematics has created many new con-
cepts, including categories, functors, and sheaves. 

The extremely abstract nature of those concepts often 
gives the impression that mathematicians are deliber-
ately trying to make things difficult. However, these 
abstract concepts were created to achieve simple 
goals, such as ‘to create a meaningful geometry even 
in a discontinuous world’. Throughout history, new 
mathematical concepts were often considered 
abstract and without substance but were widely 
accepted by societies afterwards. Negative numbers 
and complex numbers are good examples, and 
cohomology is becoming one of them. Cohomology 
has been a powerful tool for capturing structures and 
patterns in data, opening a new field of topological 
data analysis providing new applications. 

8.   Motive

In addition to étale cohomology, various other 
cohomologies have been developed for different 
applications. Examples include de Rham cohomolo-
gy, which extracts the differential geometrical struc-
ture of algebraic varieties, and crystalline cohomolo-
gy, which extracts the analytic structure in the world 
of numbers with positive characteristics. These are 
created by focusing on different aspects of algebraic 
varieties and are seemingly unrelated to each other at 
first glance. Nevertheless, these different cohomolo-
gies share common properties. Various comparison 
theorems also hold. In other words, in certain set-
tings, different cohomologies can be isomorphic.

Why is there such a deep relationship between 
cohomologies coming from very different contexts? 
Is it simply a coincidence? Grothendieck’s answer 
was ‘no’. He conjectured that ‘behind the cohomolo-
gies of algebraic varieties, there must be a universal 
object unifying them’ and named this hypothetical 
object ‘motive’ [5].

The term motive (motif in French) originally meant 
the ‘driving force’ of the creation of art works, such 
as music or paintings. Grothendieck seems to have 
used this term to mean a driving force creating vari-
ous cohomologies. In fact, Grothendieck developed 
his theory by constructing the motive theory for 
cohomologies of algebraic varieties under the 
assumption that algebraic varieties are projective*5 

*5 An algebraic variety is called projective if it is identified with the 
set of solutions of homogeneous equations inside a projective 
space. A projective space is obtained by adding infinity point(s) 
to the usual coordinate spaces (affine spaces). Also, if an algebra-
ic variety has a self-intersection point or a sharp point, they are 
called singular points. An algebraic variety is smooth if it does 
not have singular points. 
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and smooth. His theory is now called the theory of 
pure motive. 

9.   Mixed motive

However, Grothendieck’s theory can be applied 
only to cohomologies for projective smooth varieties. 
In fact, most of the cohomologies for projective 
smooth varieties are generalized for smooth varieties 
that are not necessarily projective, and they are very 
important in arithmetic geometry. Thus, after 
Grothendieck, there were many attempts to general-
ize the theory of pure motive by removing the projec-
tivity condition. The result was the theory of mixed 
motives, which was constructed independently by 
Masaki Hanamura, Marc Levine, and Vladimir 
Voevodsky in different formulations. Let us discuss 
Voevodsky’s method [6].

Roughly speaking, Voevodsky’s idea is to construct 
an analogue of cellular cohomology (or, more gener-
ally, singular cohomology) in the framework of alge-
braic geometry. As mentioned above, it is difficult to 
capture number-theoretic information (e.g., solutions 
in rational numbers) of algebraic equations by using 
the usual cellular cohomology. This is because the 
continuous deformation kills such information—
whether a point on the graph is a solution in rational 
numbers is completely lost if the point is moved even 
slightly.

Voevodsky constructed the concept of continuous 
deformation that makes sense even in the discontinu-
ous world of integers and rational numbers. Mathe-
matically, the usual continuous deformation inside a 
space X is formalized as a continuous map from the 
product of X and the real number line to X. In other 
words, the real number line plays the role of the space 
of deformation parameters (i.e., time axis). However, 
as explained above, the real number line (which is a 
continuous space) cannot be used to capture number-
theoretic information. Therefore, instead of the real 
number line, Voevodsky used the affine line, which is 
a convenient algebraic variety that represents a ‘one-
dimensional coordinate axis’ regardless of the range 
in numbers under consideration. It corresponds to the 
real number line in the world of real numbers and to 
the complex plane in the world of complex numbers 
(the complex plane is a one-dimensional space repre-
sented by one complex variable, though it is two-
dimensional from the standpoint of real numbers).

Voevodsky’s idea is very simple, but there were 
many technical difficulties to overcome. He success-
fully established his theory in a very satisfactory way. 

As naturally expected from the design, his theory 
produces an algebro-geometric analogue of cell com-
plex (and its generalization, singular complex), 
which is called the mixed motive. The mixed motive 
has the information of various cohomologies of alge-
braic varieties. For example, singular cohomology, 
étale cohomology*6, and de Rham cohomology can 
all be derived from the mixed motive. In other words, 
the mixed motive is the ‘seed’ of the various 
cohomologies. Voevodsky used his theory to prove a 
new comparison theorem for cohomologies, called 
the Milnor conjecture (and its generalization, the 
Bloch–Kato conjecture), for which he received the 
Fields Medal.

10.   Towards a further generalization of motive

One of the most important and fundamental proper-
ties of the mixed motive is homotopy invariance. In 
the usual theory of continuous deformation, we use 
the real number line as the space of the deformation 
parameter. This automatically implies that a real 
number line can be continuously deformed to a single 
point. If we consider a continuous deformation that 
transfers a point x on the real number line to the point 
(1 – t)x at time t, the point at the initial position  
(1 – 0)x = x will be moved to the origin (1 – 1)x = 0 
at time t = 1.

In the theory of mixed motives, the affine line is 
used as a replacement of the real number line. There-
fore, the affine line is ‘continuously deformed’ to a 
single point for the same reason as above. This, in 
turn, means that in the theory of mixed motives, there 
is no distinction between the affine line and a single 
point. This property is called the homotopy invari-
ance of mixed motive.

Homotopy invariance is powerful, implying vari-
ous useful facts about mixed motives. However, it 
also imposes a fundamental restriction: the cohomol-
ogy captured by the theory of mixed motive is limited 
to those satisfying homotopy invariance, while many 
cohomologies in arithmetic geometry do not satisfy 
homotopy invariance.

My collaborators and I have therefore constructed 
the theory of ‘motives with modulus’ that generalizes 
the theory of mixed motive by replacing homotopy 
invariance with a ‘weaker’ property and recasting the 
whole theory from scratch [7–9]. Many useful 
cohomologies appearing in arithmetic geometry are 

*6 Étale cohomology: Precisely, we refer to the l-adic étale co-
homology.
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expected to be controlled by this new framework. 
Cohomologies that do not satisfy homotopy invari-
ance, including cohomology of the structure sheaf, 
Hodge cohomology, cyclic cohomology, and Hodge–
Witt cohomology have been proven to be controlled 
by the theory of motives with modulus. 

11.   Future perspectives

The theory of mixed motives is expected to control 
a wide class of cohomologies not captured by the 
classical motive theory. Our future aim is to control 
the theory of p-adic cohomologies, which has made 
remarkable progress. The étale cohomology referred 
to in this article is precisely what is often referred to 
as l-adic étale cohomology (l-adic cohomology for 
simplicity). The slogan is that l-adic cohomology 
captures the topological aspects of algebraic variet-
ies, whereas p-adic cohomologies focus on the ana-
lytic aspects. Despite this difference, it is observed 
that there are interesting similarities and correspon-
dences between the two. Therefore, it is naturally 
expected that there could be a hidden ‘motive’ behind 
them. An obvious problem is that p-adic cohomolo-
gies (at least part of them) are not homotopy invariant 
and cannot be captured using the classical motive 
theory. However, if p-adic cohomologies can be con-
trolled by the theory of motives with modulus, com-
paring these theories on a common ground will 
become possible. The future success of our attempt 

will elucidate the unknown mechanism by which 
mysterious similarities between cohomologies are 
produced and will significantly impact the entire 
study of number theory.
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