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1.   Introduction

The historical origin of mathematics was the pro-
cess of counting. Two fundamental results of early 
mathematics, believed to be discovered at the Pythag-
orean school and documented by Euclid around 2500 
years ago, are 1) the number of prime numbers is 
infinite, and 2) any natural number can be uniquely 
factorized into prime factors. One of the most fasci-
nating aspects of number theory is the stark contrast 
between the simplicity of the integers and the com-
plex and seemingly irregular distribution of prime 
numbers. The distribution of prime numbers is still a 
subject of research and takes a concrete form in the 
Riemann hypothesis, the most well-known open 
problem in mathematics, still unsolved after 165 
years.

In the modern world, the development of quantum 
information technologies requires the understanding 
and control of light and matter interactions. The most 
fundamental theoretical model of this type of quan-
tum interaction is the quantum Rabi model (QRM) 
[1]. In applications, the systems are always subject to 
the passing of time, so it is fundamental to understand 
the time evolution of the system, mathematically 
controlled by the partition function and heat kernel of 
the system. Informally speaking, the essence of the 
partition function is to allow the discernment of prop-
erties of ensembles of particles (macro level) having 

independent states (micro level). More concretely, 
the partition function is defined as the sum of certain 
weighted values depending on all the possible states 
of the system.

Similarly, the Riemann zeta function is also defined 
as the product of geometric series defined for all 
prime numbers, each prime number existing indepen-
dently from the others. The Riemann zeta function 
enables us to perfectly understand the distribution of 
the prime numbers, impossible only looking at the 
individual prime numbers, in the Riemann hypothe-
sis. Surprisingly, physics and number theory share a 
similar philosophy, and the connections do not end 
here. For instance, the partition function of the quan-
tum harmonic oscillator and Riemann zeta function 
are explicitly connected. It is generally equivalent to 
consider the partition function and the spectral zeta 
function (the Dirichlet series associated with the 
eigenvalues) of a quantized physical system. The 
mathematical theory that bridges the two worlds is 
representation theory, historically developed along-
side relativity theory and quantum mechanics.

In this article, we give an overview of the theory of 
the partition function and spectral zeta function of 
quantum interaction models with the hope that the 
reader will discover and appreciate the bonds 
between quantum physics and number theory. Here-
after, we denote the ring of integers, field of rational 
numbers, field of real numbers, and field of complex 
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numbers as ℤ, ℚ, ℝ, and ℂ, respectively.

2.   Special values of the Riemann zeta function 
and automorphic forms

The harmonic series, the sum of the reciprocals of 
all positive integers, was known to diverge since the 
Middle Ages, with an ingenious proof by Nicole 
Oresme in the 14th century. What about the sum of 
the reciprocal of the squares? This question, later 
known as the Basel*1 problem, was posed by the 
Bolognese mathematician Pietro Mengoli in 1644. 
The problem remained unsolved for almost 90 years, 
until Leonhard Euler discovered in 1735 that it con-
verges to the exact value π2

6
. At the time, it was a 

surprise that the irrational number π appeared in the 
answer.

These results on the harmonic series may be written 
as ζ(1) = +∞, and ζ(2) = π2

6
, where ζ(s) is the Riemann 

zeta function (called Riemann zeta), defined by

ζ(s) := ∑ 1
ns  =           ∏            1

1 – p–s .

The middle equality connecting the series and the 
Euler product manifest the fact that any integer can be 
factored uniquely into prime factors. The domain of 
absolute convergence of the series and the infinite 
product is the half-plane ℜ(s) > 1, and it is known that 
the Riemann zeta ζ(s) can be extended analytically 
into a meromorphic function defined in the whole 
complex plane with a unique simple pole*2 at s = 1. 
Euler solved the Basel problem by comparing infinite 
product expansion of sin(πx) with the Taylor series of 
second order and discovered that the values of the 
zeta function ζ(2n) at the even integers are given by

ζ(2n) = 
(–1)n+1(2π)2n B2n

2(2n)! ,

where Bn are the Bernoulli numbers defined by the 
generating series x

ex – 1  =: ∑∞
n=0 

Bn
n!  x

n.
In contrast, the passing of time has not illuminated 

the question of irrationality (or rationality) of the 
special values at odd integers. The first nontrivial odd 
value, ζ(3), had to wait until 1979 to be shown to be 
irrational by Apéry [2]. Apéry defined mysterious 
sequences of numbers, now called Apéry numbers, 
and used them in an inventive way to prove that ζ(2) 
and ζ(3) are irrational numbers.

Even today, not much else is known about the prop-
erties of the remaining odd special values. At the turn 
of the 21st century, Rivoal proved that the sequence 
ζ(2n + 1)(n = 2, 3, …) contains infinite number of 

irrational numbers, and that there is at least one irra-
tional among the numbers ζ(5), ζ(7), ζ(9), …, ζ(21). 
Shortly after, in 2001 Zudilin improved the result to 
show that the numbers ζ(5), ζ(7), ζ(9), ζ(11) contain 
at least one irrational. This is the present state of 
knowledge about this question, at least here on planet 
Earth.

2.1   The prime number theorem
The prime number theorem, a result describing the 

distribution of prime numbers, was conjectured by 
Carl Friedrich Gauss and Adrien-Marie Legendre in 
the 18th century and proved independently by 
Charles de la Vallé Poussin and Jacques Hadamard in 
1896 using the ideas introduced by Bernhard Rie-
mann in his seminal work in number theory.

If π(x) is the function describing the number of 
primes less than x(> 0), then the prime number theo-
rem is precisely stated as

π(x) ∼ Li(x) := ∫2

x
 dy
ln(y)  ∼ x

lnx.

Here, f(x)∼g(x) means that the limit f(x)/g(x) → 1 
holds as x → ∞. At the heart of the proof is Riemann’s 
idea that ζ(s) ≠ 0 for ℜ(s) = 1.

The revolutionary contribution of Riemann of rec-
ognizing that the seemingly random distribution of 
prime numbers is intimately related to the analytical 
properties of ζ(s) may even be a greater achievement 
that a future proof of the Riemann hypothesis itself.

2.2   �Functional equation of the Riemann zeta 
function

One of the main features of ζ(s) is the functional 
equation. Let Γ(s) be the gamma function, and set  
ζ̃(s) := π–s/2Γ(s/2)ζ(s), then the functional equation is

ζ̃(1 – s) = ζ̃(s).

The essential idea of the functional equation was dis-
covered by Euler in its computations aimed to assign 
values to divergent series, including

‘‘1 + 8 + 27 + 64 + 127 + ⋯’’ = 1
120, etc.

The computational results obtained by Euler are cor-
rect even though the concept of analytical continua-
tion (or even complex function theory) did not exist 
at the time.

Let us give an outline of the proof of the functional 
equation to introduce some of the ideas used later for 

n=1

∞

p=2,3,5,7,... (primes)

ℤℚℝℂℍℕℙ   ℜℳ

*1	 Basel is the birthplace of Leonhard Euler (1707–1783).
*2	 We might regard a pole as a situation similar to when the denom-

inator of a fraction becomes 0.
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the partition function. To avoid technical complications, 
we assume that all series and integrals converge and 
behave in a reasonable manner.

The Mellin transform ℳf of a function f is defined 
by

ℳf(s) := ∫0

∞
 f(t)ts–1 dt.

A fundamental example is given by f(t) = e–nt with t 
> 0 with Mellin transform ℳf(s) = n–sΓ(s), verified 
directly from the definition of Γ(s). Similarly, for a 
series g(z) = ∑∞

n=0 an zn, the Mellin transform of h(t) 
= g(e–t) is easily verified to be ∑∞

n=0 an n–s = Γ(s)–1 
ℳh(s). The main point to note here is that the Mellin 
transform relates the series of exponential with the 
Dirichlet series.

Let us define the series θ(z) in the upper-half com-
plex plane ℍ := {z ∈ ℂ 𝔍(s) > 0} as

θ(z) := ∑ eiπn2z.

From the foregoing discussion, we verify that by set-
ting h(t) = 1

2 θ(it), we obtain ζ̃(s) = ℳf(s/2). The 
function θ(t) is an automorphic form called the 
Jacobi theta function.

Automorphic functions (resp. forms) are functions 
that are invariant (resp. almost invariant) under cer-
tain actions of non-commutative groups. Trigonomet-
ric functions are well-known to be invariant under 
translations (i.e. are periodic functions), in other 
words, they are invariant under the action of the abe-
lian group ℤ. Thus, in this sense automorphic func-
tions may be thought as non-commutative versions of 
trigonometric functions.

For z ∈ ℍ, in addition to the translation invariance 
θ(z + 2) = θ(z), the theta function satisfies the relation 
θ(–1/z) = –izθ(z). If f ̂ is the Fourier transform of a 
function f, then by the Poisson summation formula

 ∑ f ̂ (m) = ∑ f (n)

and replacing by the rapidly decreasing function ft(x) 
= e–πtx2, we obtain the desired relation. Finally, for z 
= it (t > 0), we obtain 1

t  θ( i
t ) = θ(it) and applying the 

Mellin transform to both sides we obtain the func-
tional equation for ζ̃(s).

Let us give an interpretation of the Poisson summa-
tion used above. Similar to the idea of the hands on a 
clock*3, we consider two real numbers to be equiva-
lent if they have the same fractional part and write 
this set as ℤ∖ℝ. With this in mind, the right side of the 
Poisson summation formula is the sum over the 
lengths of a circumference (i.e., number of turns), and 

the left side is the sum over the irreducible represen-
tations that appear in the Fourier transform, that is, 
representations x ↦ e2πiyx of the abelian group ℝ that 
are trivial on ℤ. In other words, we might think of it 
as a sum over all y = m ∈ ℤ. The left side may also be 
interpreted as the sum over the eigenvalues of the 
Laplacian Δ = – d2

dx2 of ℝ. The extension of this idea for 
non-commutative groups is the celebrated Selberg 
trace formula*4.

2.3   Modular and automorphic forms
Let SL2(ℤ) (respectively SL2(ℝ)), be the group of 2 

× 2 matrices with integer (respectively real) entries 
and determinant 1. The group SL2(ℤ) is generated*5 

by matrices

S = (0
1    –1

0 ),     T =  ( 1
0    1

1 ).
Now, g = ( a

c    b
a ) acts on the upper half-plane by the 

linear fractional transformation z ↦ g. z := az+b
cz+d for z 

∈ ℍ. This action preserves the Poincaré (hyperbolic) 
metric on ℍ induced by y–2 dxdy. Since the matrices 
±1 (1 is the identity matrix) define the same action, 
we consider the (projective) modular group Γ = 
PSL2(ℤ) := SL2(ℤ)/±1 and the space Γ∖ℍ of points of 
ℍ that are not equivalent under the action of Γ.

This is the type of stage where automorphic forms 
(modular forms) reside. Note that in this case we do 
not make a distinction between ±1. The theta func-
tion θ(z) above, is almost invariant under the action 
of the subgroup Γ(2) (≅ Γ0(4)) of SL2(ℤ) generated by 
S and T2, and is therefore called a Γ(2)-automorphic 
form.

3.   Quantum interaction models

3.1   QRM
In quantum optics, the QRM is the most fundamen-

tal model to describe light-matter interaction. Its 
Hamiltonian is given by

HRabi := a†a + Δσz + gσx(a† + a).

Here, a† = 1
2  (x – d

dx), a = 1
2  (x + d

dx) are the creation 
and annihilation operators for the quantum harmonic 

n∈ℤ

m∈ℤ n∈ℤ

*3	 For instance, adding 8 hours at 20:00 (8 PM), we have 4:00 (4 
AM) of the next day and not 28:00 hours of the same day, and 
similarly with minutes.

*4	 For commutative groups, the degree of irreducible representa-
tions on a complex vector space is always 1, and the trace (or 
index) of the representation is the representation itself.

*5	 In other words, any matrix in SL2(ℤ) is written as a finite product 
of S and T.
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oscillator (bosonic mode, photon or “light”) with 
angular frequency ω(= 1), the matrices

σx = (0
1    1

0), σz =  (1
0    0

–1 )
are the Pauli matrices for a two-level system (particle, 
qubit or “matter”), g > 0 is the coupling strength 
between the two-level system and the photon, and 2Δ 
> 0 is the energy difference between the levels of the 
two-level system. We may assume that the Hamilto-
nian HRabi acts on the Hilbert space L2(ℝ) ⊗ ℂ2 of 
integrable two-dimensional vector-valued functions.

The addition of a bias term to the Hamiltonian HRabi 
results in the model Hϵ

Rabi := HRabi + ϵσx (ϵ ∈ ℝ), called 
the asymmetric quantum Rabi model (AQRM). The 
AQRM appears naturally in the experimental realiza-
tion of deep strong coupling accomplished using the 
theory of cavity quantum electrodynamics [3].

3.2   Non-commutative harmonic oscillator
The non-commutative harmonic oscillator (NCHO) 

[4, 5] is defined as a system of ordinary differential 
equations having a Hamiltonian

Q := (α    β ) (– 1
2

d2

dx2  + 12 x2) 
+ (1    –1 ) (x d

dx  + 1
2 )     (α, β ∈ ℝ)

acting on L2(ℝ) ⊗ ℂ2. When the parameters α, β > 0 

satisfy αβ > 1, Q is a self-adjoint operator having only 
the discrete spectrum (0 <)λ0 ≤ λ1 ≤ ⋯ ≤ λn ≤ ⋯ ↑ ∞ 
with multiplicity of at most 2.

The spectral zeta function ζQ(s) of the NCHO is 
given by

ζQ(s) := ∑ λn
–s     (ℜs > 1).

Note that when α = β, Q is unitarily equivalent to a 
couple of harmonic oscillators; thus, ζQ(s) = 2 α2 – 1 
ζ(s). The spectral zeta function ζQ(s) has many inter-
esting and fascinating properties. For instance, ζQ(s) 
can be analytically continued to the complex plane 
with a unique simple pole at s = 1 and similarly to ζ(s), 
ζQ(s) has “trivial zeros” at negative even integers [6].

It is also possible to define analogs of the Apéry 
numbers from the special values ζQ(2), ζQ(3), ζQ(4) 
that unveil a rich mathematical structure. For 
instance, for ζQ(2), there are explicit relations with 
automorphic forms and elliptic curves (Table 1). For 
ζQ(4), one has to venture beyond the usual modular 
forms and consider natural extensions of Eichler 
forms (given by generalized Abel integrals) [7] asso-
ciated with a new cohomology [8, 9]. In the explicit 
description of the Apéry-like numbers one also 
encounters integrals of generalized Eisenstein series 
[10], deeply related to the research started by Shimura 

n=0

∞

Spectral zeta function of NCHO Riemann zeta function

ζQ(2) ζQ(3) ζQ(n) ζ(2) ζ(3) ζ(2n) ζ(2n + 1)

Special values
(positive integers)

Elliptic integrals
(Hypergeometric)

Integral of
algebraic
functions

Sums of
integrals of
algebraic
functions

Irrational
Benoulli
number

× π2n
Unknown

Geometric period

Picard-Fuchs 
ODE of family of 

elliptic curves 
with Γ(2)-torsion 

? ?

Picard-Fuchs 
ODE of family of 

elliptic curves with 
Γ1(5)-torsion

Picard-Fuchs 
ODE of 

K3-surfaces

Not
considered

Not
considered

Apéry(-like) numbers Defined from a
part of anomaly Undefined Undefined

i) Binomial expression Undefined Undefined

ii) p-ary congruence 
relation Undefined Undefined

iii) Hierarchy of 
recurrence relations Unknown

iv) Modular interpretation 
of generating functions

Γ(2)-modular 
forms

? Eichler forms for 
n = 4 Γ1(5)-modular forms

v) Metagenerating 
functions Modular Mahler Measure expression Unknown

Special values
(negative integers)

0
NC Bernoulli number

0
Bernoulli number

(−2n)
(−(2n + 1))

(−2n)
(−(2n + 1))

π2

6

Table 1.   Number-theoretical properties of the spectral zeta function.
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in 1982 on holomorphic modular forms for one vari-
able [11].

3.3   Covering models
One of the motivations for the introduction of the 

NCHO was to slightly weaken the symmetries 
imposed on the quantum harmonic oscillator to rise 
above the Gauss hypergeometric functions appearing 
in classic representation theory and to consider the 
resulting spectral zeta function as an extension of 
ζ(s).

In practice, by using representation theory, we can 
see that the eigenvalue problem of the NCHO does 
goes beyond the Gaussian hypergeometric differen-
tial equations*6 and corresponds to the existence of 
holomorphic solutions of a Heun ordinary differential 
equation (ODE), with four singular points {0, 1, αβ, 
∞}, in a region containing {0, 1} but not αβ [12, 13]. 
By joining the singular point αβ and ∞ via a conflu-
ence process, we obtain a confluent Heun ODE, 
which corresponds directly to the eigenvalue problem 
of the QRM. 

We may thus say that the NCHO is a covering 
model of the QRM by looking at the corresponding 
Heun ODE pictures [13]. The same covering relation 
holds for the η-NCHO, a shifted version of the 
NCHO and AQRM [14]. It was discovered [15] that 
the eigenvalue problem of the NCHO gives rise to a 
long-established physical model called the two-pho-
ton quantum Rabi model (tpQRM) [16]. This shows 
that the interaction between one photon and a two-
level atom (QRM) can be obtained from that between 
two photons and a two-level atom (tpQRM) via the 
covering relation. It would be interesting to confirm 
the mathematical concept of covering between these 
physical models through actual experiments. It is also 
worth remarking that in a previous study [15], using 
representation theory, the covering relation takes a 
simpler and clearer form. Further exploring the 
physical and number theoretical implications of the 
covering relations is one of the promising research 
directions in this area.

3.4   Partition function and spectral zeta functions
In this section, we consider a quantum system with 

self-adjoint Hamiltonian H. As mentioned in the 
introduction, we are interested in knowing the action 
of the unitary operator exp(–itH) (propagator/heat 
kernel) and its trace, the partition function ZH(β) of H. 
The partition function is defined as the sum of the 
Boltzmann factors exp(–βE(μ)), where E(μ) is the 
energy (eigenvalue) of the state μ, that is, it is given 

by

ZH(β) := Tr[exp(–tH)] = ∑ exp (–βE(μ)),

where Ω is the set of all possible eigenstates of H. The 
partition function is one of the fundamental tools of 
statistical mechanics for the study of entropy and 
other properties of a system in thermodynamical 
equilibrium. 

On the other hand, the spectral zeta function ζH(s) is 
defined as the Dirichlet series determined by the 
eigenvalue sequence E(μ). We assume for simplici-
ty*7 that E(μ) ≠ 0. Concretely, ζH(s) is given by

ζH(s) := ∑ E(μ)–s     (ℜ(s) ≫ 1).

Therefore, by the definition of Γ(s), the two functions 
are connected via the Mellin transform

ζH(s) = 1
Γ(s)  ∫0

∞
 ts–1 ZH(t)e–tτ dt.

It is important to mention that the long awaited 
explicit formulas of the heat kernel and partition 
function of the QRM and AQRM were finally 
obtained [17–19]. The technique for the computation 
is based on the Trotter–Kato product formula, regard-
ed as the mathematical formulation of the Feynman 
path integral, multivariate Gaussian integrals and the 
Fourier transform in 𝔽2

n (n = 1, 2, ...) interpreted as a 
Weyl representation of SL2(𝔽2), where 𝔽2 denotes the 
field with 2 elements. The series expression for the 
heat kernel corresponds to the sum of irreducible 
representations of the decomposition of the action of 
the infinite symmetric group 𝔖∞ over 𝔽2

∞, and each 
summand is an orbital integral of 𝔖∞. This is a sur-
prising discovery that gives further hints on the com-
putation of the heat kernel for more general models, 
and in general to the structure of interaction models.

The partition function also provides a short proof of 
the analytic continuation of the corresponding spectral 
zeta function using a path integral expression going 
from infinity to the origin, then circling the origin and 
back to infinity*8, and extensions of Bernoulli num-
bers for the spectral zeta function (e.g. Rabi-Bernoul-
li polynomials for the QRM). Note that the partition 
function can be recovered from the Rabi-Bernoulli 
polynomials since the Laurent expansion at the origin 
of the generating functions of the Rabi-Bernoulli 

μ∈Ω

μ∈Ω

*6	 The Gaussian hypergeometric ODE (or function) has {0, 1, ∞} as 
regular singular points in standard form.

*7	 For general systems, the spectral zeta functions are usually of 
Hurwitz type.

*8	 This type of path is known as Hankel contour.
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polynomials is equal to the partition function. Although 
integral expressions for the positive integer points for 
the spectral zeta function of the NCHO are known, an 
explicit expression for the partition function has not 
been obtained. The values at negative integers may 
also be regarded as a generalization of Bernoulli 
numbers, called NC-Bernoulli numbers. Therefore, 
we might expect that the partition function is given by 
the Laurent series at the origin of the generating func-
tion of the NC-Bernoulli numbers. Unfortunately, at 
present, even with strong supporting evidence, it 
remains as a conjecture [20].

Nevertheless, the research towards conjecture has 
illuminated several aspects of the theory. For 
instance, to work with the formal expressions of the 
special values of the spectral zeta functions arising 
from the partition functions, it is useful to consider 
Borel-summation and non-Archimedian methods to 
deal with certain divergent series. In particular, cer-
tain expressions of special values of zeta functions 
that are divergent in ℝ may be interpreted as special 
values of zeta (Hurwitz type) functions [21] defined 
in the p-adic fields ℚp [20].

4.   L-functions and the structure of zeros of 
partition function

Table 1 shows a comparison between the zeta func-
tions ζQ(s) and ζ(s). As mentioned above, if we let 
α/β → 1 in ζQ(s), we essentially obtain ζ(s). However, 
what it is important is that ζQ(s) reveals a structure 
that is not visible in ζ(s). It is also worth remarking 
that we cannot expect ζQ(s) to have an Euler product 
expression or functional equation. In fact, the integral 
expressions at positive integer points obtained in a 
previous study [9] suggest that ζQ(s) may be expressed 
as a sum of number theoretical L-functions (zeta 
functions associated to certain representations). If 
this conjecture is correct, then even if the individual 
L-functions have functional equations, ζQ(s) may not 
have one. Similarly, the lack of a functional equation 
is not a contradiction since the axis of symmetry (the 
line ℜ(s) = 1

2  for ζ(s)) for each L-function in the sum-
mands may be different. In any case, further research 
is needed to clarify these questions.

On the right of Fig. 1, one of the points involves the 
partition function of the ferromagnetic Ising model, 
given by

Fig. 1.   Partition function and spectral zeta function.

Ramanujan conjecture

1916

1949

~1636

1963
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(Limited to holomorphic automorphic forms)

Mellin transform
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Representation theory
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(1974, Deligne)
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Riemann Hypothesis
• Lee–Yang circle theorem (n-sites) for the 
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• Zeros of Eisenstein series

Regarding Lee–Yang circle theorem, study the 
distribution of  angles when the site number → ∞

Physics and number theoretical interpretation?

Compute partition of the generalized Ising model and
Kondo model using the method developed for the QRM

Analogy

(1995, Wiles–Taylor)

(2011, Taylor et al.)
Angles of roots of

L-function

“Research into non-holomorphic
automorphic forms”

Similar problems

Absolute value of
zeros of L-function

* Ramanujan conjecture reduces to the Weil conjecture for certain
algebraic varieties in 11 dimensions (discovered by Mikio Sato in 1962).

Fermat last theorem

Sato–Tate conjecture

Langlands program

Zeta and L-functions Partition function / Automorphic forms

Mathematics ⇔ Physics

1

2

3
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Z(β) := ∑ eβ|X| ∏ ∏ axy  

(axy = ayx ∈ [–1, 1]).

In particular, the Lee–Yang circle theorem (1952) 
states that all of its zeros are imaginary numbers (in 
other words, that z = e–β lie in the unit circle) [22]. Of 
course, the zeros are important physically because 
phase transition precisely occurs around these points.

The study on the zeros of zeta functions and L-func-
tions motivated several research problems that 
inspired and led research in number theory in the 20th 
century, including the Weil conjectures, a finite field 
analog of the Riemann hypothesis that led to the inno-
vations in algebraic geometry by Alexander Grothend-
ieck and the Ramanujan “ℜ(s) = 11

2 ” conjecture on 
the absolute value of the zeros (of the reciprocal) of 
the L-function

L(s, Δ) := ∑τ(n)n–s 

=  ∏   (1– τ(p)p–s + p11–2s)–1 

associated to the automorphic form Δ(z) := e2πiz 
∏∞

n=1(1 – e2πinz)24 = ∑∞
n=1τ(n)e2πinz. On the side of 

partition functions and automorphic forms, the study 
of zeros of Eisenstein series has seen progress, but the 
significance of the results is still not clear. We expect 
that significant research on this area may also be con-
ducted from the perspective of phase transition.

Another interesting point is that the research on the 
distribution of angles (complex argument) of the 
Ising model with infinite site number |Λ| appears to 
be similar to the Sato–Tate conjecture regarding the 
distribution of angles of the zeros of L(s, Δ). For the 
Sato–Tate conjecture, it is also desirable to advance 
beyond the holomorphic automorphic forms and 
arithmetic geometry considered up to now, into non-
holomorphic and Maass forms, which appear in the 
Selberg trace formula.

In our institute, Horinaga investigated non-holo-
morphic automorphic forms [23], and Nakahama is 
working on the representation theoretical aspects 
underlying the NCHO, with the aim of defining a 
multivariate version of the NCHO [24]. This latter 
research is an application of a particular case of 
Howe’s theory of dual pairs [25] (i.e., the theory of 
spherical harmonics), which forms the basis of the 
modern invariant theory and has applications to auto-
morphic forms. Higher dimensional constructions of 
the NCHO may be obtained using general dual pairs 
[25], thus we may expect the appearance of Sigel 

modular forms in the study of spectral zeta functions 
for these generalized constructions.
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