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1.   Media technology based on understanding of 
human vision

Visual media, which are media for transmitting and 
sharing visual information, have evolved in various 
forms from paintings and photographs to televisions, 
projectors, smartphones, and head-mounted displays 
(HMDs)*1. These media have become indispensable 
in our daily lives. As technology advances, it is 
expected that information will be seamlessly pre-
sented in every space, effectively turning our sur-
roundings into displays in the near future. How can 
we ensure that visual information is conveyed as 
intended across these diverse media? Ideally, repro-
ducing a real scene would involve capturing and 
playing back all the information from the physical 
space. However, such ultimate media devices do not 
yet exist, and the degree of reproduction is con-
strained by the physical limitations of each device, 
such as the intensity, wavelength, and resolution of 

the light they can display. To convey information as 
intended within these physical constraints, it is cru-
cial to understand how humans process, perceive, and 
recognize visual information.

Let us take an example of the technology behind 
color monitors. Human retinas have cells that respond 
to light in specific wavelength ranges, corresponding 
to red, green, and blue. Our perception of color arises 
from the combination of these responses—a phenom-
enon known as trichromatic vision. Leveraging this 
knowledge, modern displays recreate a vast spectrum 
of colors by blending red, green, and blue light. 
Similarly, three-dimensional (3D) televisions and 
HMDs convey 3D depth information on the basis of 
an understanding of human stereoscopic vision. Our 
brains perceive depth through binocular disparity—
subtle differences in the images seen by each eye. 
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directly in front of the eyes, it provides a highly immersive visual 
experience.



Feature Articles

30NTT Technical Review Vol. 22 No. 11 Nov. 2024

Using this principle, 3D televisions and HMDs pres-
ent different images to each eye, enabling viewers to 
experience a sense of three-dimensionality without 
the need for a physical 3D space. Thus, understand-
ing and exploiting the characteristics of human vision 
allows for the efficient reproduction of perceived 
realities without fully replicating the physical world.

While the examples discussed thus far focus on 
designing display devices to align with human visual 
characteristics, the future of information presentation 
technology poses new challenges. In emerging tech-
nologies with which real and virtual information 
coexist, the appearance of displayed content is 
expected to change dynamically across different 
viewing environments. In such scenarios, pre-
designed devices alone will not be sufficient for opti-
mal results. Instead, we will need to optimize the 
content itself in real time for each specific situation. 
To achieve this, an effective approach is to use a 
visual information processing model capable of 
quantitatively predicting perception for any given 
image and optimize the presented visuals on the basis 
of these predictions.

2.   Visual information processing model

A visual information processing model is a mathe-
matical representation of how the brain processes 
visual information. Figure 1 illustrates the process-
ing flow of a visual information processing model, 
which is discussed in this article. This model takes 
any image as input and extracts features we use when 
recognizing the input. It then predicts the intensity of 
our sensory response to these features (feature 
responses). Finally, the model estimates important 

indicators for visual presentation, such as naturalness 
of appearance and visual comfort, on the basis of 
these extracted features.

What exactly are these “features”? Our visual sys-
tem extracts and uses various features from the infor-
mation that enters the retina to recognize the world 
and guide actions. This feature extraction process is 
hierarchical. It begins with simple features such as 
color and luminance contrast (differences in lumi-
nance) in localized areas. It then progresses by inte-
grating these features to detect more complex and 
global characteristics such as orientation, shape, tex-
ture, and eventually faces, objects, and landscapes. 
However, only a limited portion of this feature 
extraction process has been established as concrete, 
practical computational models. In the following sec-
tions, I focus on explaining low-level visual informa-
tion processing, which has been used in the research 
examples covered in this article.

The specific process of feature extraction with a 
low-level visual information processing model is 
illustrated within the dashed box in Fig. 1. Let us 
begin by explaining color and luminance decomposi-
tion. Our retinas have cone cells, which are sensors 
corresponding to three wavelength bands: red, green, 
and blue. The light information received with these 
sensors is converted into a format called opponent 
colors, which emphasizes color differences while 
efficiently transmitting color information for subse-
quent processing. The color and luminance decompo-
sition process mimics this color processing mecha-
nism of the human visual system. It decomposes the 
input image by adding and subtracting the red, green, 
and blue color channels. This results in three compo-
nents: one representing luminance and two opponent 

Fig. 1.   An overview of visual information processing model.
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color components expressing the differences between 
red and green and between blue and yellow.

Next, the images corresponding to each color com-
ponent undergo frequency decomposition. Frequency 
represents the spatial fineness of patterns. The human 
visual system has neurons that selectively respond to 
various levels of fineness, and these responses repre-
sent the frequency characteristics within the retinal 
image. The low-level visual information processing 
model uses image processing called convolution to 
reproduce this frequency-based information repre-
sentation. Convolution yields images that represent 
contrast at various frequency scales. Finally, by 
applying weights to each frequency component, the 
model reflects the varying sensitivities of the human 
visual system to different frequencies [1]. Figure 2(a) 
illustrates this difference in sensitivity across fre-
quencies. In this image, frequency increases (patterns 
become finer) from left to right, while physical con-
trast decreases from bottom to top. Although the 
physical contrast is constant at the same vertical level 
regardless of frequency, the boundary between visi-
ble and invisible stripe patterns appears as an upward 
curved line. This curve illustrates the visual system’s 
varying sensitivity to different frequencies. Specifi-
cally, the visual system is most sensitive to patterns of 
intermediate fineness and less sensitive to very 
coarse or very fine patterns.

Finally, let us discuss gain control. This process is 
closely related to the perceptual strength of contrast. 
The visual system adjusts the gain of neural respons-
es to accommodate a wide range of contrasts. Initial-
ly, the response increases rapidly with physical con-
trast, but it gradually levels off in high-contrast 

regions [2]. This behavior is illustrated by the con-
trast response function shown in Fig. 1, where the 
horizontal axis represents physical contrast and the 
vertical axis represents neural response.

The contrast masking effect is a specific example 
that supports the presence of the gain control mecha-
nism. In Fig. 2(b), both left and right images have 
stripe patterns embedded at the same contrast. How-
ever, the stripes on the right, superimposed on back-
ground noise, appear much less visible. This can be 
explained by the strong neural response already trig-
gered by the background noise, which makes the 
additional response to the stripes relatively small. In 
the low-level visual information processing model, 
these gain control mechanisms are mathematically 
expressed to quantitatively predict the perceptual 
magnitude of the visual system’s response to each 
feature.

3.   Optimizing display images using visual  
information processing models

As described above, a visual information process-
ing model converts arbitrary images into features that 
reflect the sensitivities of the visual system. I will 
now explain what can be achieved using the model on 
the basis of research we have conducted.

3.1    Natural appearance manipulation of real 
object surfaces

First, let us look at research on spatial augmented 
reality (AR) using projectors. This technology, also 
known as projection mapping, allows manipulation 
of the appearance of real object surfaces. While it is 

Fig. 2.   Demonstration of contrast perception.
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predominantly used for large-scale shows and dem-
onstrations today, it has the potential for various 
information displays in more everyday settings. One 
technical challenge that needs to be addressed in such 
scenarios is the problem of interference between the 
object’s own patterns and the projected image. A 
solution to this problem is a technique called radio-
metric compensation. This technique captures the 
projection surface with a camera and modifies the 
projected image to cancel out the surface patterns [3]. 
Since projectors cannot output negative light to can-
cel out light, for example, if the projection surface has 
a red pattern, cyan light is projected to neutralize the 
color, then the desired color is added to create the 
final projected image. However, in bright ambient 
light, the contrast of the surface pattern increases, 
requiring much stronger light to cancel it out. Typical 
projectors may not be able to output such strong light, 
making it impossible to fully compensate for the pat-
terns.

Using the sensitivity characteristics of the vision 

system can be very effective in solving this problem. 
By prioritizing the reproduction of features to which 
humans are highly sensitive, while sacrificing fea-
tures with lower sensitivity, it is possible to achieve 
perceptually natural results even if physical compen-
sation is not perfect. We used a low-level visual infor-
mation processing model to achieve this [4]. The 
specific procedure is shown in Fig. 3(a). First, the 
target image and camera-captured image of the pro-
jection result are input into the model and converted 
into perceptual feature representations. Since these 
features represent the sensitivities of the visual sys-
tem, the magnitude of the difference between these 
features can be regarded as the perceptual unnatural-
ness of the projection result. We then optimize the 
compensation image to minimize this unnaturalness. 
This automatically produces projection results that, 
while not physically identical to the target, are per-
ceptually natural. Examples of actual optimization 
results are shown in Fig. 3(b). While the physics-
based method barely compensates for the surface 
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Fig. 3.   Natural appearance manipulation of real object surfaces.
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pattern, the perception-based compensation using a 
visual information processing model achieves a result 
that is perceptually much closer to the target image.

A similar method was also used to address the chal-
lenges of the projection technique called “HenGen-
Tou” we previously developed. HenGenTou creates 
an illusion of motion in stationary real objects by 
projecting black and white dynamic patterns that 
express object motion [5]. However, there was a limit 
to the size of movement that could appear natural, 
and fine manual adjustments were previously neces-
sary. To address this issue, we developed a method 
that uses a visual information processing model to 
predict the naturalness of the projection result and 
automatically optimize motion information [6]. This 
enables us to achieve maximum movement within a 
range that does not feel unnatural, enabling effective 
use of HenGenTou in interactive applications, such as 
moving the expressions of paintings to match user 
expressions. 

3.2    Comfortable semi-transparent visualization 
on real-world scenes

In media technologies such as virtual reality (VR)*2 
and AR*3, which are expected to cover the entire field 
of view, information is often displayed semi-trans-
parently to avoid obstructing the view. However, in 
situations where the background real scene is con-
stantly changing, it is generally difficult to maintain 
consistent visibility of the overlaid content. This is 
because visibility is greatly affected by the contrast of 
the background, as illustrated with the example of the 
contrast masking effect mentioned earlier. However, 
using a visual information processing model, it is 
possible to quantitatively predict changes in the visi-
bility of such semi-transparent images. We previous-
ly proposed a technique that automatically adjusts 
transparency using a visibility prediction model that 
is based on a visual information processing model 
[7]. As shown in Fig. 4(a), this method enables users 
to specify the target visibility rather than the physical 
transparency. When the content and background are 
given, the visibility prediction model predicts the vis-
ibility of the blended transparent image. The trans-
parency map is then optimized to minimize the differ-
ence between the target visibility and predicted visi-
bility. Figure 4(b) shows example results. The same 
content is displayed transparently over two different 
backgrounds. In the results of standard blending, 
even with the same transparency settings, the visibil-
ity of the content image varies greatly depending on 
the background. With the proposed method, however, 

the transparency is optimized in accordance with the 
target visibility map, resulting in consistent content 
visibility across different backgrounds. Therefore, 
our proposed method enables users to directly manip-
ulate perceptual attributes such as visibility, resulting 
in more intuitive and precise control over transparent 
compositing. This method opens up exciting possi-
bilities for applications in interactive media such as 
VR and AR, where it could enable semi-transparent 
displays that consistently maintain comfortable visi-
bility across varying backgrounds.

4.   Future challenges and prospects

The optimization of content using visual informa-
tion processing models is expected to become 
increasingly important in future media technologies. 
However, there are still many challenges to be 
addressed with this approach. First, the current visual 
information processing models for image optimiza-
tion only cover a very small part of the complex 
visual information processing occurring in the human 
brain, corresponding to the initial stages. To advance 
future research, we need to progress towards model-
ing middle to higher-level information processing. 
For example, by enabling the prediction of texture, 
depth, motion, and material perception, it will be pos-
sible to adapt the presentation images more flexibly 
without changing these impressions.

However, the construction of higher-level process-
ing models faces limitations when using the compo-
nent-based approach classically used in low-level 
visual modeling, which involves understanding and 
assembling visual information processing in small 
sub-processes. Deep learning models are considered 
promising to address this issue. By training deep 
learning models on tasks such as object recognition, 
they learn to execute complex information processing 
tasks autonomously, from analyzing input images to 
generating task-specific outputs. It is noteworthy that 
the similarity between deep learning models trained 
for object recognition and human brain information 
processing has been revealed from various perspec-
tives [8].

Nevertheless, these models do not quantitatively 
match human perception, thus cannot be directly used 
for image optimization. There are also reports  

*2 VR: A technology that immerses users in a virtual visual world 
created using computers.

*3 AR: A technology that overlays virtual information on the real 
world, making information delivery more intuitive and conve-
nient.
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suggesting that as performance improves, the diver-
gence from human perception increases [9]. In the 
future, it will be necessary to develop methods to 
train deep learning models while enhancing their 
alignment with human perception.

Along with advancing the modeling of visual infor-
mation processing, it is crucial to clarify the neces-
sary conditions for naturalness and comfort from a 
human perspective. As seen in examples such as 
Escher’s impossible staircase, humans can perceive 
physically impossible situations as natural at first 

glance. Therefore, the distribution of images that 
humans perceive as natural is thought to have a 
broader range than the distribution of images faith-
fully reproduced according to physics. By accurately 
estimating the spread of this distribution, we can 
expect to further expand the range of visual expres-
sion within various environmental and physical con-
straints.

Some of the results introduced in this article are from 
joint research with the University of Tokyo.
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Fig. 4.   Comfortable semi-transparent visualization using a visual information processing model.
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